精英家教网 > 高中数学 > 题目详情
如图,已知斜三棱柱ABC-A1B1C1的底面边长分别是AB=AC=10cm,BC=12cm,侧棱AA1=13cm,顶点A1与下底面各个顶点的距离相等,求这个棱柱的全面积.
分析:说明顶点A1 在平面 ABC 上的射影为△ABC 的外心,通过数据关系求出几何体的侧面积,上下底面面积,然后求出全面积.
解答:解:∵A1A=A1B=A1C
∴点 A1 在平面 ABC 上的射影为△ABC 的外心,在∠BAC 平分线 AD 上
∵AB=AC
∴AD⊥BC
∵AD 为 A1A 在平面 ABC 上的射影 
∴BC⊥AA1
∴BC⊥BB1
∴BB1C1C 为矩形,S=BB1×BC=156 取 AB 中点 E,连 A1E
∵A1A=A1B
∴A1E⊥AB
∴A1E=12
∴SAA1C1C=SAA1B1B=120
∴S=396
 S=S+2×
1
2
×12×8=396+96=492(cm2
这个棱柱的全面积为492cm2
点评:本题考查棱柱的表面积,考查空间想象能力,逻辑推理计算能力,点 A1 在平面 ABC 上的射影为△ABC 的外心,在∠BAC 平分线 AD 上,是解题的关键;是基础题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

精英家教网(甲)如图,已知斜三棱柱ABC-A1B1C1的侧面A1C⊥底面ABC,∠ABC=90°,BC=2,AC=2
3
,又AA1⊥A1C,AA1=A1C.
(1)求侧棱A1A与底面ABC所成的角的大小;
(2)求侧面A1B与底面所成二面角的大小;
(3)求点C到侧面A1B的距离.
(乙)在棱长为a的正方体OABC-O'A'B'C'中,E,F分别是棱AB,BC上的动点,且AE=BF.
(1)求证:A'F⊥C'E;
(2)当三棱锥B'-BEF的体积取得最大值时,求二面角B'-EF-B的大小(结果用反三角函数表示).

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,已知斜三棱柱ABC-A1B1C1的各棱长均为2,侧棱与底面所成的角为
π3
,顶点B1在底面ABC上的射影D在AB上.
(1)求证:侧面ABB1A1⊥底面ABC;
(2)证明:B1C⊥AB;
(3)求二面角B1-BC-A的正切值.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,已知斜三棱柱ABC-A1B1C1的各棱长均为2,侧棱与底面所成角为
π3
,顶点B1在底面ABC上的射影D在AB上.
(1)求证:侧面ABB1A1⊥底面ABC;
(2)证明:B1C⊥C1A;
(3)求二面角B1-BC-A的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2011•孝感模拟)如图,已知斜三棱柱ABC-A1B1C1的底面是直角三角形,∠ACB=90°,侧棱与底面所成的角为θ,且
AB1⊥BC1,点B1在底面上的射影D在BC上.
(I)若D点是BC的中点,求θ;
(Ⅱ)若cosθ=
13
,且AC=BC=AA1=a,求二面角C-AB-C1的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•梅州二模)如图,已知斜三棱柱ABC-A1B1C1中,点B1在底面ABC上的射影落在BC上,CA=CB=a,AB=
2
a

(1)求证:AC⊥平面BCC1B1
(2)当BB1与底面ABC所成的角为60°,且AB1⊥BC1时,求点B1到平面AC1的距离.

查看答案和解析>>

同步练习册答案