精英家教网 > 高中数学 > 题目详情
已知函数f(x)定义在R上,对?x,y∈R,有f(x+y)+f(x-y)=2f(x)•f(y),且f(0)≠0.
(1)求证:f(0)=1;
(2)求证:y=f(x)是偶函数;
(3)若存在常数c,使f(
c2
)=0
.①求证:对?x∈R,有f(x+c)=-f(x);②求证:y=f(x)是周期函数.
分析:(1)令x=y=0代入恒等式f(x+y)+f(x-y)=2f(x)•f(y),求解即得.
(2)令x=0代入恒等式f(x+y)+f(x-y)=2f(x)•f(y),整理即可得到f(y)=f(-y),可证得其为偶函数.
(3)①在恒等式中将x换成x+
c
2
,把y换成
c
2
,结合f(
c
2
)=0
整理即得结论;②由①的结论f(x+c)=-f(x)可以得到f(x+c)=-f(x)=f(x-c),即得周期为2c.
解答:解:(1)证明:∵f(x+y)+f(x-y)=2f(x)•f(y)
令x=y=0得f(0)+f(0)=2f2(0),
又∵f(0)≠0
∴f(0)=1
(2)证明:在f(x+y)+f(x-y)=2f(x)•f(y)中,
令x=0得f(y)+f(-y)=2f(0)•f(y)=2f(y),
∴f(y)=f(-y)
∴f(x)是偶函数
(3)①在已知等式中把x换成x+
c
2
,把y换成
c
2
,且由f(
c
2
)=0
f(x+
c
2
+
c
2
)+f(x+
c
2
-
c
2
)=2f(x+
c
2
)•f(
c
2
)=0

∴f(x+c)=-f(x)
②由=1 ①知对?x∈R,有f(x+c)=-f(x),
∴f(x+2c)=-f(x+c),代入得f(x+2c)=f(x),
∴f(x)是以T=2c为一个周期的周期函数.
点评:本题考点是抽象函数及其应用,考查利用赋值的办法求值即证明等式,此类题的特征是根据题中所给的相关性质灵活赋值以达到求值或者证明命题的目的.本题综合性较强,对观察能力与灵活变形能力要求较高.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知函数f(x)定义在(-1,1)上,对于任意的x,y∈(-1,1),有f(x)+f(y)=f(
x+y
1+xy
)
,且当x<0时,f(x)>0.
(Ⅰ)验证函数f(x)=ln
1-x
1+x
是否满足这些条件;
(Ⅱ)判断这样的函数是否具有奇偶性和其单调性,并加以证明.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)定义在R上,并且对于任意实数x,y都有f(x+y)=f(x)+f(y)成立,且x≠y时,f(x)≠f(y),x>0时,有f(x)>0.
(1)判断f(x)的奇偶性;
(2)若f(1)=1,解关于x的不等式f(x)-f(
1x-1
)≥2

查看答案和解析>>

科目:高中数学 来源: 题型:

(2009•连云港二模)已知函数f(x)定义在正整数集上,且对于任意的正整数x,都有f(x+2)=2f(x+1)-f(x),且f(1)=2,f(3)=6,则f(2009)=
4018
4018

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)定义在区间(-1,1)上,f(
1
2
)=-1,且当x,y∈(-1,1)时,恒有f(x)-f(y)=f(
x-y
1-xy
),又数列{an}满足:a1=
1
2
,an+1=
2an
1+
a
2
n

(I)证明:f(x)在(-1,1)上为奇函数;
(II)求f(an)关于n的函数解析式;
(III)令g(n)=f(an)且数列{an}满足bn=
1
g(n)
,若对于任意n∈N+,都有b1+b2+…+bnt2-3t恒成立,求实数t的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)定义在R上,对任意的x∈R,f(x+1001)=
2
f(x)
+1
,已知f(11)=1,则f(2013)=
 

查看答案和解析>>

同步练习册答案