精英家教网 > 高中数学 > 题目详情
2.函数f(x)=x|x+a|+b是奇函数的充要条件是(  )
A.ab=0B.a+b=0C.a2+b2=0D.a=b

分析 由奇函数的性质可得:f(0)=b=0,于是f(x)=x|x+a|,由f(-x)+f(x)=0,x≠0时,|x-a|=|x+a|恒成立,解得a=0.

解答 解:由奇函数的性质可得:f(0)=b=0,
∴f(x)=x|x+a|,
则f(-x)+f(x)=0,∴-x|-x+a|+x|x+a|=0,
x≠0时,|x-a|=|x+a|恒成立,则a=0.
∴函数f(x)=x|x+a|+b是奇函数的充要条件是a=b=0,即a2+b2=0.
故选:C.

点评 本题考查了函数的奇偶性,考查了推理能力与计算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源:2016-2017学年安徽六安一中高一上国庆作业二数学试卷(解析版) 题型:选择题

已知函数的定义域为,值域为,那么满足条件的整数对共有( )

A.6个 B.7个

C.8个 D.9个

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.已知椭圆C:$\frac{x^2}{a^2}$+$\frac{y^2}{b^2}$=1(a>b>0)的离心率为$\frac{{\sqrt{6}}}{3}$,上顶点为(0,1).
(Ⅰ)求椭圆C的方程;
(Ⅱ)若过原点O作两条互相垂直的射线,与椭圆C交于A,B两点,求证:点O到直线AB的距离为定值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.随机变量ξ的分布列为:
ξ0123
Px0.20.30.4
随机变量ξ的方差D(ξ)1.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.设函数y=f(x)的定义域为D,值域为A,如果存在函数x=g(t),使得函数y=f[g(t)]的值域仍是A,那么称x=g(t)是函数y=f(x)的一个等值域变换.设f(x)=log2x的定义域为[2,8],已知x=g(t)=$\frac{{m{t^2}-nt+m}}{{{t^2}+1}}({m∈R,n∈{R_+}})$是y=f(x)的一个等值变换,且函数y=f[g(t)]的定义域为R,则m=5,n=6.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.函数f(x)=x3+ax2+3x-1在x=-3时取得极值,则a=(  )
A.2B.3C.4D.5

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.已知点A(1,0),B(0,1),C(2sinθ,cosθ).
(1)若|$\overrightarrow{AC}$|=|$\overrightarrow{BC}$|,求$\frac{sinθ+2cosθ}{sinθ-cosθ}$的值;
(2)若($\overrightarrow{OA}$+2$\overrightarrow{OB}$)•$\overrightarrow{OC}$=1,其中O为坐标原点,求sinθ•cosθ的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.如图四棱锥S-ABCD,底面四边形ABCD满足条件∠DAB=90°,∠ADC=135°,AB=5,CD=2$\sqrt{2}$,AD=2,侧面SAD垂直于底面ABCD,SA=2,
(1)若SB上存在一点E,使得CE∥平面SAD,求$\frac{SE}{SB}$的值;
(2)求此四棱锥体积的最大值;
(3)当体积最大时,求二面角A-SC-B大小的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.极坐标系中,圆心在$(1,\frac{π}{4})$,半径为1的圆的方程为(  )
A.$ρ=2sin(θ-\frac{π}{4})$B.$ρ=2cos(θ-\frac{π}{4})$C.$ρcos(θ-\frac{π}{4})=2$D.$ρsin(θ-\frac{π}{4})=2$

查看答案和解析>>

同步练习册答案