精英家教网 > 高中数学 > 题目详情

几何证明选做题)如图所示.A,B是两圆的交点。AC是小圆的直径D,E分别是CA,CB的延长线与大圆的交点,已知AC=4,BE=10,且BC=AD,则AB=       

【答案】

【解析】因为,AC=4,BE=10,且BC=AD,所以,解得,在Rt∆ABC中,

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

精英家教网A.(不等式选讲选做题)若不等式|x+1|+|x-2|<a无实数解,则a的取值范围是
 

B.(几何证明选做题)如图,⊙O的直径AB=6cm,P是AB延长线上的一点,过P点作⊙O的切线,切点为C,连接AC,若∠CPA=30°,PC=
 

C.(极坐标参数方程选做题)曲线
x=cosα
y=1+sinα
(a为参数)与曲线ρ2-2ρcosθ=0的交点个数为
 
个.

查看答案和解析>>

科目:高中数学 来源: 题型:

(考生注意:请在二题中任选一题作答,如果多做,则按所做的第一题评分)
(1)(几何证明选做题)如图,已知RT△ABC的两条直角边AC,BC的长分别为3cm,4cm,以AC为直径的圆与AB交于点D,则
BD
DA
=
16
9
16
9

(2)(坐标系与参数方程选做题)已知圆C的圆心是直线
x=t
y=1+t
(t为参数)与x轴的交点,且圆C与直线x+y+3=0相切.则圆C的方程为
(x+1)2+y2=2
(x+1)2+y2=2

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•咸阳三模)(考生注意:请在下列三道试题中任选一题作答,如果多做,则按所做的第一题评阅记分)
A.(不等式选做题)若不等式|2a-1|≤ |x+
1
x
|
对一切非零实数x恒成立,则实数a的取值范围为
[-
1
2
3
2
]
[-
1
2
3
2
]

B.(几何证明选做题)如图,直角三角形ABC中,∠B=90°,AB=4,以BC为直径的圆交AC边于点D,AD=2,则∠C的大小为
30°
30°

C.(极坐标与参数方程选做题)若直线l的极坐标方程为ρcos(θ-
π
4
)=3
2
,圆C:
x=cosθ
y=sinθ
(θ为参数)上的点到直线l的距离为d,则d的最大值为
3
2
+1
3
2
+1

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•广州一模)(几何证明选做题)
如图,四边形ABCD中,∠A=∠B=90°,AD:AB:BC=3:4:6,E、F分别是AB、CD上的点,AE:AB=DF:DC=1:3.若四边形ABCD的周长为1,则四边形AEFD的周长为
1
2
1
2

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•陕西)(几何证明选做题)
如图,弦AB与CD相交于⊙O内一点E,过E作BC的平行线与AD的延长线相交于点P.已知PD=2DA=2,则PE=
6
6

查看答案和解析>>

同步练习册答案