分析 (1)先证明∠OCF=∠OFC,可得∠CFD=∠DEF,可得△DEF为等腰三角形,从而证得DF=DE.
(2)由切割线定理求得圆的半径r的值,可得⊙O的面积.
解答
解:(1)证明:连结OF,∵DF切⊙O于F,
∴∠OFD=90°,∴∠OFC+∠CFD=90°.
∵OC=OF,∴∠OCF=∠OFC.
∵CO⊥AB于O,∴∠OCF+∠CEO=90°.
∴∠CFD=∠CEO=∠DEF,∴DF=DE.
(2)若DB=2,DF=4,则由切割线定理可得DF2=DA•DB,即16=(2+2r)•2,
求得圆的半径r=3,
故⊙O的面积为πr2=9π.
点评 本题主要考查了与圆有关的比例线段、圆的切线的性质定理的应用,属于中档题.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | (1,+∞) | B. | [1,+∞) | C. | (-∞,1) | D. | (-∞,1] |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | (-∞,2) | B. | (${\frac{1}{2}$,+∞) | C. | (-∞,$\frac{1}{2}}$) | D. | (2,+∞) |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{{\sqrt{3}}}{3}$ | B. | $\sqrt{3}$ | C. | $2\sqrt{3}$ | D. | 3 |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com