精英家教网 > 高中数学 > 题目详情
精英家教网已知A,B 分别为曲线C:
x2
a2
+y2=1(y≥0,a>0)与x轴的左、右两个交点,直线l过点B,且与x轴垂直,S为l上异于点B的一点,连接AS交曲线C于点T.
(1)若曲线C为半圆,点T为圆弧
AB
的三等分点,试求出点S的坐标;
(2)如图,点M是以SB为直径的圆与线段TB的交点,试问:是否存在a,使得O,M,S三点共线?若存在,求出a的值,若不存在,请说明理由.
分析:(1)先由曲线C为半圆时得到a=1,再由点T为圆弧
AB
的三等分点得∠BOT=60°或120°,再对每一种情况下利用解三角的方法分别求点S的坐标即可;
(II)先把直线AS的方程与曲线方程联立,求出点T的坐标以及kBT,进而求得kSM;以及直线SM的方程,再利用O在直线SM上即可求出a的值.
解答:解:(Ⅰ)当曲线C为半圆时,a=1,
由点T为圆弧
AB
的三等分点得∠BOT=60°或120°.┉┉(1分)
(1)当∠BOT=60°时,∠SAB=30°.
又AB=2,故在△SAE中,有SB=AB•tan30°=
2
3
3
,∴s(1,
2
3
3
);┉┉(3分)
(2)当∠BOT=120°时,同理可求得点S的坐标为(1,2
3
),
综上,s(1,
2
3
3
)或s(1,2
3
).┉┉(5分)
(Ⅱ)假设存在a,使得O,M,S三点共线.
由于点M在以SB为直径的圆上,故SM⊥BT.
显然,直线AS的斜率k存在且K>0,可设直线AS的方程为y=k(x+a)
x2
a2
+y2=1
y=k(x+a)
?(1+a2k2)x2+2a3k2x+a4k2-a2=0.
设点T(xT,yT),则有xT• (-a)=
a4k2-a2
1+a2k2

故xT=
a-a3k2
1+a2k2
?yT=k(xT+a )=
2ak
1+a2k2
,故T(
a-a3k2
1+a2k2
2ak
1+a2k2

又B(a,0)∴kBT=
yT
xT-a
=-
1
a2k
,kSM=a2k.
x=a
y=k(x+a)
?S(a,2ak),所直线SM的方程为y-2ak=a2k(x-a)
O,S,M三点共线当且仅当O在直线SM上,即2ak=a2ka.
又a>0,k>0?a=
2

故存在a=
2
,使得O,M,S三点共线.
点评:本题主要考查直线和圆相切,直线的方程,三点共线和圆的几何性质等基础知识,考查用代数方法研究圆锥曲线的性质和数形结合的数学思想,考查解决问题的能力和运算能力.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知F1,F2分别为双曲
x2
a2
-
y2
b2
=1(a>0,b>0)
的左、右焦点,P为双曲线左支上任一点,若
|PF2|2
|PF1|
的最小值为8a,则双曲线的离心率e的取值范围是(  )
A、(1,+∞)
B、(0,3]
C、(1,3]
D、(0,2]

查看答案和解析>>

科目:高中数学 来源:2012-2013学年陕西省榆林市神木中学高三(上)数学寒假作业1(理科)(解析版) 题型:选择题

已知F1,F2分别为双曲的左、右焦点,P为双曲线左支上任一点,若的最小值为8a,则双曲线的离心率e的取值范围是( )
A.(1,+∞)
B.(0,3]
C.(1,3]
D.(0,2]

查看答案和解析>>

科目:高中数学 来源:2010-2011学年新疆乌鲁木齐市高三(上)期末数学试卷(解析版) 题型:选择题

已知F1,F2分别为双曲的左、右焦点,P为双曲线左支上任一点,若的最小值为8a,则双曲线的离心率e的取值范围是( )
A.(1,+∞)
B.(0,3]
C.(1,3]
D.(0,2]

查看答案和解析>>

科目:高中数学 来源:2013年陕西省西安市西工大附中高考数学一模试卷(理科)(解析版) 题型:选择题

已知F1,F2分别为双曲的左、右焦点,P为双曲线左支上任一点,若的最小值为8a,则双曲线的离心率e的取值范围是( )
A.(1,+∞)
B.(0,3]
C.(1,3]
D.(0,2]

查看答案和解析>>

科目:高中数学 来源:2012年陕西省西安市西工大附中高考数学四模试卷(理科)(解析版) 题型:选择题

已知F1,F2分别为双曲的左、右焦点,P为双曲线左支上任一点,若的最小值为8a,则双曲线的离心率e的取值范围是( )
A.(1,+∞)
B.(0,3]
C.(1,3]
D.(0,2]

查看答案和解析>>

同步练习册答案