精英家教网 > 高中数学 > 题目详情
某集团公司举办一次募捐爱心演出,有1000人参加,每人一张门票,每张100元。在演出过程中穿插抽奖活动,第一轮抽奖从这1000张票根中随机抽取10张,其持有者获得价值1000元的奖品,并参加第二轮抽奖活动。第二轮抽奖由第一轮获奖者独立操作按钮,电脑随机产生两个数),满足电脑显示“中奖”,且抽奖者获得特等奖奖金;否则电脑显示“谢谢”,则不中奖。
(1)已知小明在第一轮抽奖中被抽中,求小明在第二轮抽奖中获奖的概率;
(2)若该集团公司望在此次活动中至少获得61875元的收益,则特等奖奖金最高可设置成多少元?
(1)    (2)a≤9900

试题分析:(Ⅰ)从0,1,2,3四个数字中有重复取2个数字,其基本事件有(0,0),(0,1),(0,2),(0,3),(1,0),(1,1),(1,2),(1,3),(2,0),(2,1),(2,2),(2,3),(3,0),(3,1),(3,2),(3,3)共 16 个.
设“小明在第二轮抽奖中获奖”为事件A,且事件A所包含的基本事件有(0,0),(2,0),(3,0),(3,1),(3,3)共5个,∴P(A)=
(Ⅱ)设特等奖奖金为a元,一个人参加此次活动的收益为ξ,则ξ的可能取值为-100,900,a.
P(ξ=-100)=,P(ξ=900)=,P(ξ="a)="
∴ξ的分布列为
ξ
-100
900
a
P




∴该集团公司收益的期望为
由题意,解得a≤9900.
故特等奖奖金最高可设置成9900元.
点评:主要是考查了古典概型概率和分布列的运用,属于中档题。
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

一个口袋中有红球3个,白球4个.
(Ⅰ)从中不放回地摸球,每次摸2个,摸到的2个球中至少有1个红球则中奖,求摸2次恰好第2次中奖的概率;
(Ⅱ)每次同时摸2个,并放回,摸到的2个球中至少有1个红球则中奖,连续摸4次,求中奖次数X的数学期望E(X).

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

在区间内随机取个实数,则直线,直线轴围成的面积大于的概率是(  )
A.B.C.D.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

下图是某游戏中使用的材质均匀的圆形转盘,其中Ⅰ,Ⅱ,Ⅲ,Ⅳ部分的面积各占转盘面积的.游戏规则如下:

① 当指针指到Ⅰ,Ⅱ, Ⅲ,Ⅳ部分时,分别获得积分100分,40分,10分,0分;
② (ⅰ)若参加该游戏转一次转盘获得的积分不是40分,则按①获得相应的积分,游戏结束;
(ⅱ)若参加该游戏转一次获得的积分是40分,则用抛一枚质地均匀的硬币的方法来决定是否继续游戏.正面向上时,游戏结束;反面向上时,再转一次转盘,若再转一次的积分不高于40分,则最终积分为0分,否则最终积分为100分,游戏结束.
设某人参加该游戏一次所获积分为
(1)求的概率;
(2)求的概率分布及数学期望.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

某单位实行休年假制度三年来,名职工休年假的次数进行的调查统计结果如下表所示:
休假次数




人数




根据上表信息解答以下问题:
⑴从该单位任选两名职工,用表示这两人休年假次数之和,记“函数,在区间上有且只有一个零点”为事件,求事件发生的概率
⑵从该单位任选两名职工,用表示这两人休年假次数之差的绝对值,求随机变量的分布列及数学期望.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

在正六边形的6个顶点中随机选择4个顶点,则构成的四边形是梯形的概率为     

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

随机变量X服从二项分布X~,且等于 (   )
A.B.0 C.1D.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知A,B,C,D,E,F是边长为1的正六边形的6个顶点,在顶点取自A,B,C,D,E,F的所有三角形中,随机(等可能)取一个三角形.设随机变量X为取出三角形的面积.
(Ⅰ) 求概率P ( X=);
(Ⅱ) 求数学期望E ( X ).

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

若以连续掷两次骰子得到的点数分别作为点P的横、纵坐标,则点P在直线上的概率为      

查看答案和解析>>

同步练习册答案