精英家教网 > 高中数学 > 题目详情
12.《九章算术》中将底面是直角三角形的直三棱柱称之为“堑堵”,已知某“堑堵”的三视图如图所示,则该“堑堵”的外接球的表面积为16π.

分析 由已知可得该“堑堵”是一个以俯视图为底面的直三棱柱,求出棱柱外接球的半径,进而可得该“堑堵”的外接球的表面积.

解答 解:由已知可得该“堑堵”是一个以俯视图为底面的直三棱柱,
底面外接球的半径r=$\frac{\sqrt{{2}^{2}+{2}^{2}}}{2}$=$\sqrt{2}$,
球心到底面的距离d=$\frac{h}{2}$=$\sqrt{2}$,
故该“堑堵”的外接球的半径R=$\sqrt{{r}^{2}+{d}^{2}}$=2,
故该“堑堵”的外接球的表面积:S=4πR2=16π,
故答案为:16π

点评 本题考查的知识点是棱柱的体积和表面积,棱锥的体积和表面积,球的体积和表面积,简单几何体的三视图,难度基础.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

2.矩形ABCD沿BD将△BCD折起,使C点在平面ABD上投影在AB上,折起后下列关系:①△ABC是直角三角形;②△ACD是直角三角形;③AD∥BC;④AD⊥BC.其中正确的是(  )
A.①②④B.②③C.①③④D.②④

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.记复数z=a+bi(i为虚数单位)的共轭复数为$\overline z=a-bi(a,b∈R)$,已知z=2+i,则$\overline{z^2}$=3-4i.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.在平面直角坐标系中,设A(x1,y1),B(x2,y2).定义:${d_α}(A,B)={({|{{x_1}-{x_2}}|^α}+{|{{y_1}-{y_2}}|^α})^{\frac{1}{α}}}$,其中α∈R+(R+表示正实数).
(Ⅰ)设A(1,1),B(2,3),求d1(A,B)和d2(A,B)的值;
(Ⅱ) 求证:对平面中任意两点A和B都有${d_2}(A,B)≤{d_1}(A,B)≤\sqrt{2}{d_2}(A,B)$;
(Ⅲ)设M(x,y),O为原点,记${D_α}=\{M(x,y)|{d_α}(M,O)≤1,α∈{R^+}\}$.若0<α<β,试写出Dα与Dβ的关系(只需写出结论,不必证明).

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.如图,在三棱锥P-ABC中,PA⊥平面ABC,AB=BC,PA=AC,E为PC上的动点,当 BE⊥PC时,$\frac{CE}{PC}$的值为$\frac{1}{4}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.已知椭圆E:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)的离心率e=$\frac{\sqrt{3}}{2}$,且过点($\frac{\sqrt{3}}{2}$,$\frac{1}{4}$).
(Ⅰ)求椭圆E的方程;
(Ⅱ)已知A、B分别为椭圆E的右顶点、上顶点,过原点O做斜率为k(k>0)的直线交椭圆于C、D两点,求四边形ACBD面积S的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.如果函数f(x)=sinωx+$\sqrt{3}$cosωx的两个相邻零点间的距离为2,那么f(1)+f(2)+f(3)+…+f(9)的值为(  )
A.1B.-1C.$\sqrt{3}$D.-$\sqrt{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.将参加环保知识竞赛的学生成绩整理后画出的频率分布直方图如图所示,则图中a的值为0.028. 

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.已知函数y=f(2x)+2x是偶函数,且f(2)=1,则f(-2)=(  )
A.5B.4C.3D.2

查看答案和解析>>

同步练习册答案