20£®ÔÚÆ½ÃæÖ±½Ç×ø±êϵÖУ¬ÉèA£¨x1£¬y1£©£¬B£¨x2£¬y2£©£®¶¨Ò壺${d_¦Á}£¨A£¬B£©={£¨{|{{x_1}-{x_2}}|^¦Á}+{|{{y_1}-{y_2}}|^¦Á}£©^{\frac{1}{¦Á}}}$£¬ÆäÖЦÁ¡ÊR+£¨R+±íʾÕýʵÊý£©£®
£¨¢ñ£©ÉèA£¨1£¬1£©£¬B£¨2£¬3£©£¬Çód1£¨A£¬B£©ºÍd2£¨A£¬B£©µÄÖµ£»
£¨¢ò£© ÇóÖ¤£º¶ÔÆ½ÃæÖÐÈÎÒâÁ½µãAºÍB¶¼ÓÐ${d_2}£¨A£¬B£©¡Ü{d_1}£¨A£¬B£©¡Ü\sqrt{2}{d_2}£¨A£¬B£©$£»
£¨¢ó£©ÉèM£¨x£¬y£©£¬OΪԭµã£¬¼Ç${D_¦Á}=\{M£¨x£¬y£©|{d_¦Á}£¨M£¬O£©¡Ü1£¬¦Á¡Ê{R^+}\}$£®Èô0£¼¦Á£¼¦Â£¬ÊÔд³öD¦ÁÓëD¦ÂµÄ¹ØÏµ£¨Ö»Ðèд³ö½áÂÛ£¬²»±ØÖ¤Ã÷£©£®

·ÖÎö £¨¢ñ£©d¦Á£¨A£¬B£©µÄ¶¨Òå´úÈë¼´¿ÉµÃ³ö£®
£¨¢ò£©ÉèA£¨x1£¬y1£©£¬B£¨x2£¬y2£©£¬Ôòd1£¨A£¬B£©=|x1-x2|+|y1-y2|£¬${d_2}£¨A£¬B£©={£¨{|{{x_1}-{x_2}}|^2}+{|{{y_1}-{y_2}}|^2}£©^{\frac{1}{2}}}$£®Í¨¹ý¼ÆËãÕ¹¿ª¼´¿ÉÖ¤Ã÷£®
£¨¢ó£©D¦Á?D¦ÂÕæ×Ó¼¯£®ÈÎÈ¡£¨x0£¬y0£©¡ÊD¦Á£¬${d_¦Á}£¨M£¬O£©={£¨{|{x_0}|^¦Á}+{|{y_0}|^¦Á}£©^{\frac{1}{¦Á}}}¡Ü1$£®¶Ôx0£¬y0·ÖÀàÌÖÂÛ£¬¼´¿ÉÖ¤Ã÷£®

½â´ð £¨¢ñ£©½â£ºd1£¨A£¬B£©=|1-2|+|1-3|=3£¬
d2£¨A£¬B£©=$[|1-2{|}^{2}+|1-3{|}^{2}]^{\frac{1}{2}}$=${5}^{\frac{1}{2}}$=$\sqrt{5}$£®
£¨¢ò£©Ö¤Ã÷£ºÉèA£¨x1£¬y1£©£¬B£¨x2£¬y2£©£¬Ôòd1£¨A£¬B£©=|x1-x2|+|y1-y2|£¬${d_2}£¨A£¬B£©={£¨{|{{x_1}-{x_2}}|^2}+{|{{y_1}-{y_2}}|^2}£©^{\frac{1}{2}}}$£®
${d_1}^2£¨A£¬B£©={£¨|{{x_1}-{x_2}}|+|{{y_1}-{y_2}}|£©^2}$=${x_1}^2+{x_2}^2+{y_1}^2+{y_2}^2-2{x_1}{x_2}-2{y_1}{y_2}+2|{{x_1}-{x_2}}||{{y_1}-{y_2}}|$£®
${d_2}^2£¨A£¬B£©=£¨{|{{x_1}-{x_2}}|^2}+{|{{y_1}-{y_2}}|^2}£©$=${x_1}^2+{x_2}^2+{y_1}^2+{y_2}^2-2{x_1}{x_2}-2{y_1}{y_2}$£®
ËùÒÔd2£¨A£¬B£©¡Üd1£¨A£¬B£©³ÉÁ¢£®
ÒòΪ${£¨\sqrt{2}{d_2}£¨A£¬B£©£©^2}=2{x_1}^2+2{x_2}^2+2{y_1}^2+2{y_2}^2-4{x_1}{x_2}-4{y_1}{y_2}$£¬
ËùÒÔ${£¨\sqrt{2}•{d_2}£¨A£¬B£©£©^2}-{d_1}{£¨A£¬B£©^2}$=${x_1}^2+{x_2}^2+{y_1}^2+{y_2}^2-2{x_1}{x_2}-2{y_1}{y_2}-2|{{x_1}-{x_2}}||{{y_1}-{y_2}}|$=${£¨{x_1}-{x_2}£©^2}+{£¨{y_1}-{y_2}£©^2}-2|{{x_1}-{x_2}}||{{y_1}-{y_2}}|$=${£¨|{x_1}-{x_2}|-|{y_1}-{y_2}|£©^2}¡Ý0$£®
ËùÒÔ${d_1}£¨A£¬B£©¡Ü\sqrt{2}{d_2}£¨A£¬B£©$³ÉÁ¢£®
£¨¢ó£©D¦Á?D¦ÂÕæ×Ó¼¯£®
Ö¤Ã÷ÈçÏ£º
ÈÎÈ¡£¨x0£¬y0£©¡ÊD¦Á£¬${d_¦Á}£¨M£¬O£©={£¨{|{x_0}|^¦Á}+{|{y_0}|^¦Á}£©^{\frac{1}{¦Á}}}¡Ü1$£®
µ±x0=1£¬y0=0ʱ£¬d¦Á£¨M£¬O£©=0£¬d¦Â£¨M£¬O£©=0£¬´ËʱD¦Á⊆D¦Â£®
µ±|x0|=1£¬|y0|=0ʱ£¬${d_¦Á}£¨M£¬O£©={£¨{|{x_0}|^¦Á}+{|{y_0}|^¦Á}£©^{\frac{1}{¦Á}}}=1$£¬d¦Â£¨M£¬O£©=1£®
´ËʱD¦Á⊆D¦Â£®
ͬÀí¿ÉµÃ£¬µ±|x0|=0£¬|y0|=1ʱ£¬D¦Á⊆D¦Â£®
µ±|x0|¡Ù1£¬|y0|¡Ù1ʱ£¬ÒòΪ${d_¦Á}£¨M£¬O£©={£¨{|{x_0}|^¦Á}+{|{y_0}|^¦Á}£©^{\frac{1}{¦Á}}}¡Ü1$£¬ËùÒÔ ${|{x_0}|^¦Á}+{|{y_0}|^¦Á}¡Ü1$£®
ÓÖÒòΪ0£¼¦Á£¼¦Â£¬ËùÒÔ${|{x_0}|^¦Â}+{|{y_0}|^¦Â}£¼{|{x_0}|^¦Á}+{|{y_0}|^¦Á}¡Ü1$£®´ËʱD¦Á⊆D¦Â£®
·´Ö®²»³ÉÁ¢£®
ËùÒÔD¦Á?D¦Â£®

µãÆÀ ±¾Ì⿼²éÁËж¨Òå¡¢¼¯ºÏÖ®¼äµÄ¹ØÏµ¡¢Á½µãÖ®¼äµÄ¾àÀ빫ʽ¡¢·ÖÀàÌÖÂÛ·½·¨¡¢²»µÈʽµÄ½â·¨£¬¿¼²éÁËÍÆÀíÄÜÁ¦Óë¼ÆËãÄÜÁ¦£¬ÊôÓÚÄÑÌ⣮

Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

10£®ÒÑÖª¼¯ºÏA={x|x£¾2m}£¬B={x|-4£¼x-4£¼4}
£¨1£©µ±m=2ʱ£¬ÇóA¡ÈB£¬A¡ÉB£»
£¨2£©ÈôA⊆∁RB£¬ÇóʵÊýmµÄȡֵ·¶Î§£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

11£®×ÜÌåÓɱàºÅΪ00£¬01£¬02£¬¡­48£¬49µÄ50¸ö¸öÌå×é³É£®ÀûÓÃÏÂÃæµÄËæ»úÊý±íѡȡ8¸ö¸öÌ壬ѡȡ·½·¨ÊÇ´ÓËæ»úÊý±íµÚ6ÐеĵÚ9Áк͵Ú10ÁÐÊý×Ö¿ªÊ¼ÓÉ×óµ½ÓÒÒÀ´ÎѡȡÁ½¸öÊý×Ö£¬ÔòÑ¡³öÀ´µÄµÚ8¸ö¸öÌåµÄ±àºÅΪ£¨¡¡¡¡£©
¸½£ºµÚ6ÐÐÖÁµÚ9ÐеÄËæ»úÊý±í£º
A£®16B£®19C£®20D£®38

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

8£®5ÃûѧÉú½øÐÐ֪ʶ¾ºÈü£¬±ÊÊÔ½áÊøºó£¬¼×¡¢ÒÒÁ½Ãû²ÎÈüÕßȥѯÎʳɼ¨£¬»Ø´ðÕß¶Ô¼×˵£º¡°ÄãÃÇ5È˵ijɼ¨»¥²»Ïàͬ£¬ºÜÒź¶£¬ÄãµÄ³É¼¨²»ÊÇ×îºÃµÄ¡±£»¶ÔÒÒ˵£º¡°Äã²»ÊÇ×îºóÒ»Ãû¡±£®¸ù¾ÝÒÔÉÏÐÅÏ¢£¬Õâ5¸öÈ˵ıÊÊÔÃû´ÎµÄËùÓпÉÄܵÄÖÖÊýÊÇ£¨¡¡¡¡£©
A£®54B£®72C£®78D£®96

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

15£®ÒÑÖª¡÷ABCµÄ¶¥µãA£¨5£¬1£©£¬AB±ßÉϵÄÖÐÏßCMËùÔÚµÄÖ±Ïß·½³ÌΪ2x-y-5=0£¬AC±ßÉϵĸßBHËùÔÚµÄÖ±Ïß·½³ÌΪx-2y-5=0£®Çó
£¨¢ñ£©ACËùÔÚµÄÖ±Ïß·½³Ì£»
£¨¢ò£©µãBµÄ×ø±ê£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

5£®Ô²C1£ºx2+£¨y-1£©2=1ºÍÔ²C2£ºx2-6x+y2-8y=0µÄλÖùØÏµÎª£¨¡¡¡¡£©
A£®ÏཻB£®ÄÚÇÐC£®ÍâÇÐD£®ÄÚº¬

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

12£®¡¶¾ÅÕÂËãÊõ¡·Öн«µ×ÃæÊÇÖ±½ÇÈý½ÇÐεÄÖ±ÈýÀâÖù³ÆÖ®Îª¡°Çµ¶Â¡±£¬ÒÑ֪ij¡°Çµ¶Â¡±µÄÈýÊÓͼÈçͼËùʾ£¬Ôò¸Ã¡°Çµ¶Â¡±µÄÍâ½ÓÇòµÄ±íÃæ»ýΪ16¦Ð£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

9£®ÒÑÖª·½³Ì3x+x=5µÄ¸ùÔÚÇø¼ä[k£¬k+1£©£¨k¡ÊZ£©£¬ÔòkµÄֵΪ1£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

10£®ÈôÔ²£¨x-1£©2+y2=25µÄÏÒAB±»µãP£¨2£¬1£©Æ½·Ö£¬ÔòÖ±ÏßABµÄ·½³ÌΪ£¨¡¡¡¡£©
A£®2x+y-3=0B£®x+y-3=0C£®x-y-1=0D£®2x-y-5=0

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸