·ÖÎö £¨¢ñ£©d¦Á£¨A£¬B£©µÄ¶¨Òå´úÈë¼´¿ÉµÃ³ö£®
£¨¢ò£©ÉèA£¨x1£¬y1£©£¬B£¨x2£¬y2£©£¬Ôòd1£¨A£¬B£©=|x1-x2|+|y1-y2|£¬${d_2}£¨A£¬B£©={£¨{|{{x_1}-{x_2}}|^2}+{|{{y_1}-{y_2}}|^2}£©^{\frac{1}{2}}}$£®Í¨¹ý¼ÆËãÕ¹¿ª¼´¿ÉÖ¤Ã÷£®
£¨¢ó£©D¦Á?D¦ÂÕæ×Ó¼¯£®ÈÎÈ¡£¨x0£¬y0£©¡ÊD¦Á£¬${d_¦Á}£¨M£¬O£©={£¨{|{x_0}|^¦Á}+{|{y_0}|^¦Á}£©^{\frac{1}{¦Á}}}¡Ü1$£®¶Ôx0£¬y0·ÖÀàÌÖÂÛ£¬¼´¿ÉÖ¤Ã÷£®
½â´ð £¨¢ñ£©½â£ºd1£¨A£¬B£©=|1-2|+|1-3|=3£¬
d2£¨A£¬B£©=$[|1-2{|}^{2}+|1-3{|}^{2}]^{\frac{1}{2}}$=${5}^{\frac{1}{2}}$=$\sqrt{5}$£®
£¨¢ò£©Ö¤Ã÷£ºÉèA£¨x1£¬y1£©£¬B£¨x2£¬y2£©£¬Ôòd1£¨A£¬B£©=|x1-x2|+|y1-y2|£¬${d_2}£¨A£¬B£©={£¨{|{{x_1}-{x_2}}|^2}+{|{{y_1}-{y_2}}|^2}£©^{\frac{1}{2}}}$£®
${d_1}^2£¨A£¬B£©={£¨|{{x_1}-{x_2}}|+|{{y_1}-{y_2}}|£©^2}$=${x_1}^2+{x_2}^2+{y_1}^2+{y_2}^2-2{x_1}{x_2}-2{y_1}{y_2}+2|{{x_1}-{x_2}}||{{y_1}-{y_2}}|$£®
${d_2}^2£¨A£¬B£©=£¨{|{{x_1}-{x_2}}|^2}+{|{{y_1}-{y_2}}|^2}£©$=${x_1}^2+{x_2}^2+{y_1}^2+{y_2}^2-2{x_1}{x_2}-2{y_1}{y_2}$£®
ËùÒÔd2£¨A£¬B£©¡Üd1£¨A£¬B£©³ÉÁ¢£®
ÒòΪ${£¨\sqrt{2}{d_2}£¨A£¬B£©£©^2}=2{x_1}^2+2{x_2}^2+2{y_1}^2+2{y_2}^2-4{x_1}{x_2}-4{y_1}{y_2}$£¬
ËùÒÔ${£¨\sqrt{2}•{d_2}£¨A£¬B£©£©^2}-{d_1}{£¨A£¬B£©^2}$=${x_1}^2+{x_2}^2+{y_1}^2+{y_2}^2-2{x_1}{x_2}-2{y_1}{y_2}-2|{{x_1}-{x_2}}||{{y_1}-{y_2}}|$=${£¨{x_1}-{x_2}£©^2}+{£¨{y_1}-{y_2}£©^2}-2|{{x_1}-{x_2}}||{{y_1}-{y_2}}|$=${£¨|{x_1}-{x_2}|-|{y_1}-{y_2}|£©^2}¡Ý0$£®
ËùÒÔ${d_1}£¨A£¬B£©¡Ü\sqrt{2}{d_2}£¨A£¬B£©$³ÉÁ¢£®
£¨¢ó£©D¦Á?D¦ÂÕæ×Ó¼¯£®
Ö¤Ã÷ÈçÏ£º
ÈÎÈ¡£¨x0£¬y0£©¡ÊD¦Á£¬${d_¦Á}£¨M£¬O£©={£¨{|{x_0}|^¦Á}+{|{y_0}|^¦Á}£©^{\frac{1}{¦Á}}}¡Ü1$£®
µ±x0=1£¬y0=0ʱ£¬d¦Á£¨M£¬O£©=0£¬d¦Â£¨M£¬O£©=0£¬´ËʱD¦Á⊆D¦Â£®
µ±|x0|=1£¬|y0|=0ʱ£¬${d_¦Á}£¨M£¬O£©={£¨{|{x_0}|^¦Á}+{|{y_0}|^¦Á}£©^{\frac{1}{¦Á}}}=1$£¬d¦Â£¨M£¬O£©=1£®
´ËʱD¦Á⊆D¦Â£®
ͬÀí¿ÉµÃ£¬µ±|x0|=0£¬|y0|=1ʱ£¬D¦Á⊆D¦Â£®
µ±|x0|¡Ù1£¬|y0|¡Ù1ʱ£¬ÒòΪ${d_¦Á}£¨M£¬O£©={£¨{|{x_0}|^¦Á}+{|{y_0}|^¦Á}£©^{\frac{1}{¦Á}}}¡Ü1$£¬ËùÒÔ ${|{x_0}|^¦Á}+{|{y_0}|^¦Á}¡Ü1$£®
ÓÖÒòΪ0£¼¦Á£¼¦Â£¬ËùÒÔ${|{x_0}|^¦Â}+{|{y_0}|^¦Â}£¼{|{x_0}|^¦Á}+{|{y_0}|^¦Á}¡Ü1$£®´ËʱD¦Á⊆D¦Â£®
·´Ö®²»³ÉÁ¢£®
ËùÒÔD¦Á?D¦Â£®
µãÆÀ ±¾Ì⿼²éÁËж¨Òå¡¢¼¯ºÏÖ®¼äµÄ¹ØÏµ¡¢Á½µãÖ®¼äµÄ¾àÀ빫ʽ¡¢·ÖÀàÌÖÂÛ·½·¨¡¢²»µÈʽµÄ½â·¨£¬¿¼²éÁËÍÆÀíÄÜÁ¦Óë¼ÆËãÄÜÁ¦£¬ÊôÓÚÄÑÌ⣮
| Äê¼¶ | ¸ßÖÐ¿Î³Ì | Äê¼¶ | ³õÖÐ¿Î³Ì |
| ¸ßÒ» | ¸ßÒ»Ãâ·Ñ¿Î³ÌÍÆ¼ö£¡ | ³õÒ» | ³õÒ»Ãâ·Ñ¿Î³ÌÍÆ¼ö£¡ |
| ¸ß¶þ | ¸ß¶þÃâ·Ñ¿Î³ÌÍÆ¼ö£¡ | ³õ¶þ | ³õ¶þÃâ·Ñ¿Î³ÌÍÆ¼ö£¡ |
| ¸ßÈý | ¸ßÈýÃâ·Ñ¿Î³ÌÍÆ¼ö£¡ | ³õÈý | ³õÈýÃâ·Ñ¿Î³ÌÍÆ¼ö£¡ |
¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ
| A£® | 16 | B£® | 19 | C£® | 20 | D£® | 38 |
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ
| A£® | 54 | B£® | 72 | C£® | 78 | D£® | 96 |
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ
| A£® | Ïཻ | B£® | ÄÚÇÐ | C£® | ÍâÇÐ | D£® | ÄÚº¬ |
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ
| A£® | 2x+y-3=0 | B£® | x+y-3=0 | C£® | x-y-1=0 | D£® | 2x-y-5=0 |
²é¿´´ð°¸ºÍ½âÎö>>
¹ú¼ÊѧУÓÅÑ¡ - Á·Ï°²áÁбí - ÊÔÌâÁбí
ºþ±±Ê¡»¥ÁªÍøÎ¥·¨ºÍ²»Á¼ÐÅÏ¢¾Ù±¨Æ½Ì¨ | ÍøÉÏÓк¦ÐÅÏ¢¾Ù±¨×¨Çø | µçÐÅթƾٱ¨×¨Çø | ÉæÀúÊ·ÐéÎÞÖ÷ÒåÓк¦ÐÅÏ¢¾Ù±¨×¨Çø | ÉæÆóÇÖȨ¾Ù±¨×¨Çø
Î¥·¨ºÍ²»Á¼ÐÅÏ¢¾Ù±¨µç»°£º027-86699610 ¾Ù±¨ÓÊÏ䣺58377363@163.com