精英家教网 > 高中数学 > 题目详情
已知点P是抛物线上的动点,点P在y轴上的射影是M,点A的坐标是,则的最小值是
A.B.4 C.D.5
C

试题分析:抛物线焦点,准线,依据抛物线定义可知,所以当三点共线时,距离和最小,此时最小距离为
点评:利用抛物线定义:抛物线上的点到焦点的距离等于到准线的距离可实现线段的转化
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

已知正方形ABCD 对角线AC所在直线方程为 .抛物线过B,D两点
(1)若正方形中心M为(2,2)时,求点N(b,c)的轨迹方程。
(2)求证方程的两实根满足

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

椭圆的左右焦点为,弦过点,若△的内切圆周长为,点坐标分别为,则            

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

焦点为(0,6)且与双曲线有相同的渐近线的双曲线方程是(   )
A.B.C.D.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

已知椭圆的上、下顶点分别为,左、右焦点分别为,若四边形是正方形,则此椭圆的离心率等于
A.B.C.D.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

已知F1,F2为椭圆的两个焦点,过F1的直线交椭圆于A,B两点,若|F2A|+|F2B|=12,则|AB|=               。

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本小题满分15分)
给定椭圆C:,称圆心在原点O、半径是的圆为椭圆C的“准圆”.已知椭圆C的一个焦点为,其短轴的一个端点到点的距离为
(1)求椭圆C和其“准圆”的方程;
(2)若点是椭圆C的“准圆”与轴正半轴的交点,是椭圆C上的两相异点,且轴,求的取值范围;
(3)在椭圆C的“准圆”上任取一点,过点作直线,使得与椭圆C都只有一个交点,试判断是否垂直?并说明理由.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,是抛物线(为正常数)上的两个动点,直线AB与x轴交于点P,与y轴交于点Q,且

(Ⅰ)求证:直线AB过抛物线C的焦点;
(Ⅱ)是否存在直线AB,使得若存在,求出直线AB的方程;若不存在,请说明理由。

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

已知椭圆方程为),F(-c,0)和F(c,0)分别是椭圆的左 右焦点.
①若P是椭圆上的动点,延长到M,使=,则M的轨迹是圆;
②若P是椭圆上的动点,则
③以焦点半径为直径的圆必与以长轴为直径的圆内切;
④若在椭圆上,则过的椭圆的切线方程是
⑤点P为椭圆上任意一点,则椭圆的焦点角形的面积为.
以上说法中,正确的有                

查看答案和解析>>

同步练习册答案