精英家教网 > 高中数学 > 题目详情
18.已知△ABC的三个内角A,B,C成等差数列,且它们所对的边a,b,c满足a+c=kb,求实数k的取值范围.

分析 利用角A、B、C成等差数列B=$\frac{π}{3}$,利用a+c=kb,可得sinA+sinC=$\frac{\sqrt{3}}{2}$k,进而表示出k,即可求得实数k的取值范围.

解答 解:∵A+B+C=π,且角A、B、C成等差数列,
∴B=π-(A+C)=π-2B,解之得B=$\frac{π}{3}$,
∵a+c=kb,
∴sinA+sinC=$\frac{\sqrt{3}}{2}$k
∴k=$\frac{2}{\sqrt{3}}$[sinA+sin($\frac{2π}{3}$-A)]=$\frac{2}{\sqrt{3}}$[sinA+$\frac{\sqrt{3}}{2}$cosA+$\frac{1}{2}$sinA)]=2sin(A+$\frac{π}{6}$)
∵0<A<$\frac{2π}{3}$,
∴$\frac{π}{6}$<A+$\frac{π}{6}$<$\frac{5π}{6}$,
∴$\frac{1}{2}$<sin(A+$\frac{π}{6}$)≤1,
∴1<2sin(A+$\frac{π}{6}$)≤2,
∴实数k的取值范围是(1,2].

点评 本题考查等差数列的性质,考查正弦定理,考查辅助角公式的运用,考查学生分析解决问题的能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

8.已知A={a,b,c}.B={-2,0,2},映射f:A→B满足 f(a)+f(b)=f(c).求满足条件的映射的个数.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.在平面直角坐际系xOy中,A,B为x轴正半轴上的两个动点,P(异于原点O)为y轴上的-个定点,若以AB为直径的圆与圆x2+(y-2)2=1相外切.且∠APB的大小恒为定值,则线段OP的长为$\sqrt{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.设集合A={x|-2≤x≤5},B={x|m+1≤x≤2m-1}.
(1)若A∩B=B,求m的取值范围;
(2)若A∩B≠∅,求m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.判断下列各对直线是否相交,若相交,求出交点坐标:
(1)l1:x-2y=0与l2:2x-y+1=0;
(2)l1:y=-x+1与l2:x+y+4=0;
(3)l1:-3x=2y与l2:y=$\frac{4}{3}$x-1.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.函数y=$\sqrt{{log}_{0.1}(x+2)}$的定义域是(-2,-1].

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.类比A⊆B?A∩B=A,试再写出两个等价命题:
A⊆B?A∪B=B;
A⊆B?A∩(∁B)=∅.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.在△ABC中,角A,B,C的对边分别为a,b,c,若$\frac{a-c}{sinB-sinC}$=$\frac{b}{sinA+sinC}$.
(1)求角A.
(2)函数f(x)=cos2(x+A)-sin2(x-A)+$\frac{1}{2}$sin2x,求函数f(x)的递增区间.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.已知函数f(x)=lnx-x+1(x∈(0,+∞)),函数g(x)=mx-1(m>0).
(1)判断函数y=f(x)的单调性,给出你的结论;
(2)设x>0,讨论函数y=f(x)的图象与曲线y=g(x)公共点的个数;
(3)若数列{an}各项均为正数,a1=1,在m=2时,an+1=f(an)+g(an)+2(n∈N*),求证:$\frac{1}{1+{a}_{1}}$+$\frac{1}{1+{a}_{2}}$+…+$\frac{1}{1+{a}_{n}}$≥$\frac{1}{2}$.

查看答案和解析>>

同步练习册答案