精英家教网 > 高中数学 > 题目详情
已知函数f(x)=loga(x+
1+x2
)
(x∈R,a>0,a≠1).
(Ⅰ)判断f(x)奇偶性;
(Ⅱ)若g(x)图象与曲线y=f(x)(x
3
4
)关于y=x对称,求g(x)的解析式及定义域;
(Ⅲ)若g(x)<
5m-5-m
2
对于任意的m∈N+恒成立,求a的取值范围.
分析:(I)根据对数的运算性质,化简得f(x)+f(-x)=0,可得f(-x)=-f(x),可得函数f(x)是奇函数;
(II)由题意,函数y=g(x)与y=f(x)互为反函数,将f(x)的x、y互换,解出用x表示y的式子,即可得到g(x)的解析式.再结合a的范围加以讨论,即可得到函数g(x)的定义域;
(III)根据a的范围加以讨论,并结合函数g(x)的单调性,建立关于a的不等式,解之即可得到实数a的取值范围.
解答:解:(I)∵f(x)=loga(x+
1+x2
)

∴f(-x)=loga[-x+
1+(-x)2
]
=loga(-x+
1+x2
)

可得f(x)+f(-x)=loga[(x+
1+x2
)(-x+
1+x2
)]
=loga(1+x2-x2)=loga1=0
∴f(-x)=-f(x),
∵f(x)的定义域为R,
∴函数f(x)是奇函数
(II)∵f(x)=loga(x+
1+x2
)
,g(x)图象与曲线y=f(x)关于y=x对称,
∴函数y=g(x)与y=f(x)互为反函数,
令x=loga(y+
1+y2
)
,得y+
1+y2
=ax,得(ax-y)2=1+y2
∴2yax=a2x-1,得y=
a2x-1
2ax
,因此g(x)的解析式为g(x)=
1
2
(ax-a-x
∵f(x)的定义域为{x|x
3
4
}
∴解不等式
1
2
(ax-a-x)≥
3
4
,得ax≥2
当a>1时,g(x)的定义域为[loga2,+∞);当0<a<1时,g(x)的定义域为(-∞,loga2]
(III)由(2)得g(x)=
1
2
(ax-a-x
当0<a<1时,loga2<0,此时定义域中无正整数,不满足条件;
当a>1时,需所有正整数在定义域中,故loga2≤1,得a≥2
∵g(x)=
1
2
(ax-a-x)在其定义域内是增函数
∴由不等式g(x)<
5m-5-m
2
=g(5),得a<5,所求a的取值范围是2≤a<5
点评:本题给出对数型函数,讨论函数的奇偶性并求函数在指定区间上的反函数,着重考查了指、对数函数的简单性质和函数的反函数求法等知识,属于中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知函数f(x)=2x-2+ae-x(a∈R)
(1)若曲线y=f(x)在点(1,f(1))处的切线平行于x轴,求a的值;
(2)当a=1时,若直线l:y=kx-2与曲线y=f(x)在(-∞,0)上有公共点,求k的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=x2+2|lnx-1|.
(1)求函数y=f(x)的最小值;
(2)证明:对任意x∈[1,+∞),lnx≥
2(x-1)
x+1
恒成立;
(3)对于函数f(x)图象上的不同两点A(x1,y1),B(x2,y2)(x1<x2),如果在函数f(x)图象上存在点M(x0,y0)(其中x0∈(x1,x2))使得点M处的切线l∥AB,则称直线AB存在“伴侣切线”.特别地,当x0=
x1+x2
2
时,又称直线AB存在“中值伴侣切线”.试问:当x≥e时,对于函数f(x)图象上不同两点A、B,直线AB是否存在“中值伴侣切线”?证明你的结论.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=x2-bx的图象在点A(1,f(1))处的切线l与直线x+3y-1=0垂直,若数列{
1
f(n)
}的前n项和为Sn,则S2012的值为(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=xlnx
(Ⅰ)求函数f(x)的极值点;
(Ⅱ)若直线l过点(0,-1),并且与曲线y=f(x)相切,求直线l的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=
3
x
a
+
3
(a-1)
x
,a≠0且a≠1.
(1)试就实数a的不同取值,写出该函数的单调增区间;
(2)已知当x>0时,函数在(0,
6
)上单调递减,在(
6
,+∞)上单调递增,求a的值并写出函数的解析式;
(3)记(2)中的函数图象为曲线C,试问是否存在经过原点的直线l,使得l为曲线C的对称轴?若存在,求出直线l的方程;若不存在,请说明理由.

查看答案和解析>>

同步练习册答案