提高过江大桥的车辆通行能力可改善整个城市的交通状况.在一般情况下,大桥上的车流速度(单位:千米/小时)是车流密度(单位:辆/千米)的函数.当桥上的车流密度达到200辆/千米时,造成堵塞,此时车流速度为0;当车流密度不超过40辆/千米时,车流速度为80千米/小时.研究表明:当时,车流速度是车流密度的一次函数.(1)当时,求函数的表达式;
(2)当车流密度为多大时,车流量(单位时间内通过桥上某观测点的车辆数,单位: 辆/小时)f ,可以达到最大,并求出最大值.
(1)(2)即当车流密度为100辆/千米时,车流量可以达到最大,最大值为5000辆/小时.
解析试题分析:(1)本题是一个分段函数,当车流量小于等于40时,速度为80千米/小时,当车流量大于40时小于或等于200时通过两端点解出一次函数的解析式.(2)通过计算分段函数一个是一次函数,一个是二次函数来确定最大值.本题属于分段函数的应用,这类应用题关键就是审清题意.分段函数的最大值是分别求出各段函数的最大值,在求出总的最大值,这种思维要有.
试题解析:解:(1)由题意:当时,=80;当时,设,
再由已知得 解得
故函数的表达式为 5分
(2)依题意并由(1)可得
当时,为增函数,故当时,其最大值为;
当时,;
当时,有最大值5000.
综上,当时,在区间上取得最大值5000.
即当车流密度为100辆/千米时,车流量可以达到最大,最大值为5000辆/小时. 10分
考点:
科目:高中数学 来源: 题型:解答题
某开发商用9000万元在市区购买一块土地建一幢写字楼,规划要求写字楼每层建筑面积为2000平方米.已知该写字楼第一层的建筑费用为每平方米4000元,从第二层开始,每一层的建筑费用比其下面一层每平方米增加100元.
(1)若该写字楼共x层,总开发费用为y万元,求函数y=f(x)的表达式;(总开发费用=总建筑费用+购地费用)
(2)要使整幢写字楼每平方米的平均开发费用最低,该写字楼应建为多少层?
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
如图所示,是一个矩形花坛,其中AB= 4米,AD = 3米.现将矩形花坛扩建成一个更大的矩形花园,要求:B在上,D在上,对角线过C点, 且矩形的面积小于64平方米.
(Ⅰ)设长为米,矩形的面积为平方米,试用解析式将表示成的函数,并写出该函数的定义域;
(Ⅱ)当的长度是多少时,矩形的面积最小?并求最小面积.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
某市电力公司在电力供不应求时期,为了居民节约用电,采用“阶梯电价”方法计算电价,每月用电不超过度时,按每度元计费,每月用电超过度时,超过部分按每度元计费,每月用电超过度时,超过部分按每度元计费
(Ⅰ)设每月用电度,应交电费元,写出关于的函数;
(Ⅱ)已知小王家第一季度缴费情况如下:
月份 | 1 | 2 | 3 | 合计 |
缴费金额 | 87元 | 62元 | 45元8角 | 194元8角 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
提高过江大桥的车辆通行能力可改善整个城市的交通状况。在一般情况下,大桥上的车流速度v(单位:千米/小时)是车流密度x(单位:辆/千米)的函数。当桥上的的车流密度达到200辆/千米时,造成堵塞,此时车流速度为0;当车流密度不超过20辆/千米时,车流速度为60千米/小时,研究表明;当时,车流速度v是车流密度x的一次函数.
(Ⅰ)当时,求函数的表达式;
(Ⅱ)当车流密度为多大时,车流量(单位时间内通过桥上某观点的车辆数,单位:辆/每小时)可以达到最大,并求出最大值(精确到1辆/小时).
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
已知函数f(x)是定义在R上的奇函数,且f(x)的图象关于直线x=1对称.
(1)求证:f(x)是周期为4的周期函数;
(2)若(0<x≤1),求x∈[-5,-4]时,函数f(x)的解析式.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
已知定义在上的函数,如果满足:对任意,存在常数,使得成立,则称是上的有界函数,其中称为函数的上界.
下面我们来考虑两个函数:,.
(Ⅰ)当时,求函数在上的值域,并判断函数在上是否为有界函数,请说明理由;
(Ⅱ)若,函数在上的上界是,求的取值范围;
(Ⅲ)若函数在上是以为上界的有界函数, 求实数的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
某市一家庭今年一月份、二月份、和三月份煤气用量和支付费用如下表所示:
月份 | 用气量(立方米) | 煤气费(元) |
1 | 4 | 4.00 |
2 | 25 | 14.00 |
3 | 35 | 19.00 |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com