(1)方法一 对函数f(x)求导,f′(x)=
·
.
令f′(x)=0,得x=1或x=-1.
当x∈(0,1)时,f′(x)>0,f(x)在(0,1)上单调递增;
当x∈(1,2)时,f′(x)<0,f(x)在(1,2)上单调递减.又f(0)=0,f(1)=
,f(2)=
,
∴当x∈[0,2]时,f(x)的值域是
.
方法二 当x=0时,f(x)=0;
当x∈(0,2]时,f(x)>0且
f(x)=
·
≤
·
=
,
当且仅当x=
,即x=1时,“=”成立.
∴当x∈[0,2]时,f(x)的值域是
.
(2)设函数g(x)在[0,2]上的值域是A.
∵对任意x
1∈[0,2],总存在x
0∈[0,2],
使f(x
1)-g(x
0)=0,∴
A.
对函数g(x)求导,g′(x)=ax
2-a
2.
①当x∈(0,2),a<0时,g′(x)<0,
∴函数g(x)在(0,2)上单调递减.
∵g(0)=0,g(2)=
a-2a
2<0,
∴当x∈[0,2]时,不满足
A;
②当a>0时,g′(x)=a(x-
)(x+
).
令g′(x)=0,得x=
或x=-
(舍去).
(ⅰ)当x∈[0,2],0<
<2时,列表:
∵g(0)=0,g(
)<0,
又∵
A,∴g(2)=
≥
.
解得
≤a≤1.
(ⅱ)当x∈(0,2),
≥2时,g′(x)<0,
∴函数在(0,2)上单调递减,
∵g(0)=0,g(2)=
<0,
∴当x∈[0,2]时,不满足
A.
综上,实数a的取值范围是
.