精英家教网 > 高中数学 > 题目详情
已知函数f(x)=,x∈[0,2].
(1)求f(x)的值域;
(2)设a≠0,函数g(x)=ax3-a2x,x∈[0,2].若对任意x1∈[0,2],总存在x2∈[0,2],使f(x1)-g(x2)=0.求实数a的取值范围.
(1)f(x)的值域是(2)实数a的取值范围是
 (1)方法一 对函数f(x)求导,f′(x)=·.
令f′(x)=0,得x=1或x=-1.
当x∈(0,1)时,f′(x)>0,f(x)在(0,1)上单调递增;
当x∈(1,2)时,f′(x)<0,f(x)在(1,2)上单调递减.又f(0)=0,f(1)=,f(2)=,
∴当x∈[0,2]时,f(x)的值域是.
方法二 当x=0时,f(x)=0;
当x∈(0,2]时,f(x)>0且
f(x)=··=
当且仅当x=,即x=1时,“=”成立.
∴当x∈[0,2]时,f(x)的值域是.
(2)设函数g(x)在[0,2]上的值域是A.
∵对任意x1∈[0,2],总存在x0∈[0,2],
使f(x1)-g(x0)=0,∴A.
对函数g(x)求导,g′(x)=ax2-a2.
①当x∈(0,2),a<0时,g′(x)<0,
∴函数g(x)在(0,2)上单调递减.
∵g(0)=0,g(2)=a-2a2<0,
∴当x∈[0,2]时,不满足A;
②当a>0时,g′(x)=a(x-)(x+).
令g′(x)=0,得x=或x=-(舍去).
(ⅰ)当x∈[0,2],0<<2时,列表:
x
0
(0,

,2)
2

 
-
0
+
 
g(x)
0

-


∵g(0)=0,g()<0,
又∵A,∴g(2)=.
解得≤a≤1.
(ⅱ)当x∈(0,2),≥2时,g′(x)<0,
∴函数在(0,2)上单调递减,
∵g(0)=0,g(2)=<0,
∴当x∈[0,2]时,不满足A.
综上,实数a的取值范围是.
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

(本小题满分14分)已知关于x的函数f(x)=bx2cxbc,其导函数为f+(x)。令g(x)=∣f+(x) ∣,记函数g(x)在区间[-1、1]上的最大值为M
(Ⅰ)如果函数f(x)在x=1处有极值-,试确定bc的值;
(Ⅱ)若∣b∣>1,证明对任意的c,都有M>2;
(Ⅲ)若MK对任意的bc恒成立,试求k的最大值。

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知函数
(1)求函数的最大值;
(2)当时,求证

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本小题12分)已知函数.
(1)    设,求函数的极值;
(2)若,且当时,12a恒成立,试确定的取值范围.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

函数=(1-)在[0,1]上的最大值为__________.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

函数y=2x4-4x3+2x2在区间[0,2]上的最大值与最小值分别为
A.8,B.,0
C.8,0D.8,-

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

函数y=f(x)=lnxx,在区间(0,e]上的最大值为
A.1-eB.-1C.-eD.0

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

求函数在区间上的最大值和最小值。

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

函数为常数)在处取得极值,则等于(    )
A.B.C.D.

查看答案和解析>>

同步练习册答案