精英家教网 > 高中数学 > 题目详情
若关于x的方程
1
2
x2+
2a
x-
1
2
b+3=0
1
4
x2+
2b
x-a+6=0
在R上都有解,则23a•2b的最小值为
 
分析:根据二次方程根的个数与判别式有关,令两个方程的判别式都大于等于0,且注意被开方数大于等于0,列出不等式组,画出可行域;利用同底数的幂的运算法则化简要求的式子;利用线性规划求出指数的最小值,从而求出式子的最小值.
解答:解:∵
1
2
x2+
2a
x-
1
2
b+3=0
在R上有解
1=2a-4×
1
2
×(-
1
2
b+3)≥0

即2a+b≥6且a≥0①
1
4
x2+
2b
x-a+6=0

2=2b-4×
1
4
×(-a+6)≥0

即a+2b≥6且b≥0②作出①②对应的可行域
精英家教网

∵23a•2b=23a+b,令z=3a+b变形为b=-3a+z,作出相应的直线,结合图象,当直线移至(0,6)时直线的纵截距最小,此时z最小为6
∴23a•2b=23a+b≥26=64
故答案为:64
点评:本题考查二次方程的根的个数取决于判别式、开偶次方根的被开方数大于等于0、不等式组表示的平面区域、利用线性规划求函数的最值、同底数的幂的运算法则.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

给出以下四个结论:
(1)函数f(x)=
x-1
2x+1
的对称中心是(-
1
2
,-
1
2
)

(2)若关于x的方程x-
1
x
+k=0
在x∈(0,1)没有实数根,则k的取值范围是k≥2;
(3)已知点P(a,b)与点Q(1,0)在直线2x-3y+1=0两侧,当a>0且a≠1,b>0时,
b
a-1
的取值范围为(-∞,-
1
3
)∪(
2
3
,+∞)

其中正确的结论是:
 

查看答案和解析>>

科目:高中数学 来源: 题型:

给出以下五个结论:
(1)函数f(x)=
x-1
2x+1
的对称中心是(-
1
2
,-
1
2
)

(2)若关于x的方程x-
1
x
+k=0
在x∈(0,1)没有实数根,则k的取值范围是k≥2;
(3)已知点P(a,b)与点Q(1,0)在直线2x-3y+1=0两侧,当a>0且a≠1,b>0时,
b
a-1
的取值范围为(-∞,-
1
3
)∪(
2
3
,+∞)

(4)若将函数f(x)=sin(2x-
π
3
)
的图象向右平移?(?>0)个单位后变为偶函数,则?的最小值是
12

(5)已知m,n是两条不重合的直线,α,β是两个不重合的平面,若m⊥α,n∥β且m⊥n,则α⊥β;其中正确的结论是:
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=
12
x2-lnx
,g(x)=2x3-9x2+12x-3.
(1)求函数y=f(x)的单调区间;
(2)若关于x的方程g(x)=k有三个零点,求实数k的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知f(x)=
2x+12x+1-a
是奇函数.
(1)求a的值;
(2)判断并证明f(x)在(0,+∞)上的单调性;
(3)若关于x的方程k•f(x)=2x在(0,1]上有解,求k的取值范围.

查看答案和解析>>

科目:高中数学 来源:2014届浙江瑞安瑞祥高级中学高二下学期期中考试文数学试卷(解析版) 题型:解答题

设函数f(x)=x3-12x+5,x∈R.

(1)求函数f(x)的单调区间和极值;

(2)若关于x的方程f(x)=a有三个不同实根,求实数a的取值范围;

 

查看答案和解析>>

同步练习册答案