精英家教网 > 高中数学 > 题目详情
如果椭圆的焦点为F1(0,-1)和F2(0,1),离心率为
2
3
,过点F1做直线交椭圆于A、B两点,那么△ABF2的周长是(  )
分析:利用椭圆的定义即可得出.
解答:解:设椭圆的标准方程为:
y2
a2
+
x2
b2
=1
(a>b>0),
∵c=1,
c
a
=
2
3
,解得c=1,a=
3
2

∴△ABF2的周长=|AB|+|AF2|+|BF2|=|AF1|+|AF2|+|BF1|+|BF2|=4a=
3
2
=6.
故选:B.
点评:本题考查了椭圆的定义及其性质,属于基础题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知椭圆的焦点为F1(-t,0),F2(t,0),(t>0),P为椭圆上一点,且|F1F2|是|PF1|,|PF2|的等差中项.
(1)求椭圆方程;
(2)如果点P在第二象限且∠PF1F2=1200,求tan∠F1PF2的值;
(3)设A是椭圆的右顶点,在椭圆上是否存在点M(不同于点A),使∠F1MA=90°,若存在,请求出点M的坐标;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

椭圆的焦点为F1F2,点P在椭圆上,如果线段PF1的中点在y轴上,那么|PF1|是|PF2|的(  )

A.7倍        B.5倍         C.4倍        D.3倍

查看答案和解析>>

科目:高中数学 来源:2014届甘肃武威六中高二12月学段检测文科数学试题(解析版) 题型:选择题

椭圆的焦点为F1和F2 ,点P在椭圆上,如果线段PF1的中点在y轴上,那么︱PF1︱是︱PF2

A.3倍       B.4倍      C.5倍      D.7倍

 

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知椭圆的焦点为F1(-t,0),F2(t,0),(t>0),P为椭圆上一点,且|F1F2|是|PF1|,|PF2|的等差中项.
(1)求椭圆方程;
(2)如果点P在第二象限且∠PF1F2=1200,求tan∠F1PF2的值;
(3)设A是椭圆的右顶点,在椭圆上是否存在点M(不同于点A),使∠F1MA=90°,若存在,请求出点M的坐标;若不存在,请说明理由.

查看答案和解析>>

同步练习册答案