精英家教网 > 高中数学 > 题目详情
已知
a
=(sinx,-cosx),
b
=(cosx,
3
cosx).函数f(x)=
a
b
+
3
2
,求f(x)的最小正周期,并求其图象对称中心的坐标.
分析:依题意可求得f(x)的表达式,从而可求得其最小正周期及其图象对称中心的坐标.
解答:解:∵
a
=(sinx,-cosx),
b
=(cosx,
3
cosx),
∴f(x)=
a
b
+
3
2

=sinxcosx-
3
cos2x+
3
2
…(2分)
=
1
2
sin2x-
3
2
(cos2x+1)+
3
2

=
1
2
sin2x-
3
2
cos2x
=sin(2x-
π
3
)…(4分)
所以f(x)的最小正周期为π.…(5分)
令sin(2x-
π
3
)=0,得2x-
π
3
=kπ,
∴x=
2
+
π
6
,k∈Z,
故所求对称中心的坐标为(
2
+
π
6
,0)k∈Z,…(8分)
点评:本题考查平面向量数量积的坐标表示,考查三角函数中的恒等变换应用,求得f(x)的解析式是关键,考查向量与三角的综合应用,属于中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知
a
=(cosx+sinx,sinx),
b
=(cosx-sinx,2cosx)
,设f(x)=
a
b

(1)求函数f(x)的最小正周期,并写出f(x)的减区间;
(2)当x∈[0,
π
2
]
时,求函数f(x)的最大值及最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知
a
=(sinx+2cosx,3cosx),
b
=(sinx,cosx),且f(x)=
a
b

(1)求函数f(x)的最大值;
(2)求函数f(x)在[0,π]上的单调递增区间.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知
a
=(sinx,
3
4
),
b
=(cos(x+
π
3
),1)函数f(x)=
a
b

(1)求f(x)的最值和单调递减区间;
(2)已知在△ABC中,角A、B、C的对边分别为a,b,c,f(A)=0,a=
3
,求△ABC的面积的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知
a
=(sinx,cosx+1),
b
=(cosx,cosx-1),f(x)=
a
b
(x∈R)
(1)求函数f(x)的最小正周期和单调区间;
(2)若x∈[-
π
6
π
2
]
,求函数f(x)的最值及相应的x的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•成都一模)已知
a
=(cosx+sinx, sinx), 
b
=(cosx-sinx, 2cosx)
,设f(x)=
a
b

(Ⅰ)求函数f(x)的最小正周期;
(Ⅱ)当x∈[-
π
4
π
4
]
时,求函数f(x)的最大值及最小值.

查看答案和解析>>

同步练习册答案