精英家教网 > 高中数学 > 题目详情

【题目】已知抛物线过点(为非零常数)轴不垂直的直线C交于两点.

(1)求证:(是坐标原点)

(2)AB的垂直平分线与轴交于,求实数的取值范围;

(3)A关于轴的对称点为D,求证:直线BD过定点,并求出定点的坐标.

【答案】(1)见解析;(2) (3) 过定点,且定点为.

【解析】

(1)因为,所以联立直线和曲线方程,得到的表达式,代入计算即可证明结果. (2)首先根据第一问的计算过程求出的中点坐标,从而设出AB的垂直平分线:,令,求出的表达式,根据第一问中求出的关系,代入求解的范围即可. (3)首先根据对称关系设出D点的坐标,然后利用两点式写出直线BD的方程,根据第一问的计算过程化简直线方程,从而求出直线所过的定点.

(1)设过点的直线的方程为,联立曲线方程得:

所以.

(2) 两点的中点坐标为,则

.,即AB的垂直平分线为

,解得.,即,所以.

所以的取值范围为.

(3) A关于轴的对称点为D,则,则直线BD,整理得:.

=.

所以直线BD为:=,所以恒过定点.得证.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知椭圆的右焦点为且过点椭圆C轴的交点为AB(点A位于点B的上方),直线与椭圆C交于不同的两点MN(点M位于点N的上方).

(1)求椭圆C的方程;

(2)求△OMN面积的最大值;

(3)求证:直线AN和直线BM交点的纵坐标为常值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设函数

1)若函数fx)在处有极值,求函数fx)的最大值;

2)是否存在实数b,使得关于x的不等式上恒成立?若存在,求出b的取值范围;若不存在,说明理由;

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设椭圆的离心率为,圆正半轴交于点,圆在点处的切线被椭圆截得的弦长为.

1)求椭圆的方程;

2)设圆上任意一点处的切线交椭圆于点,求证:.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

(1)讨论的单调性;

(2)若有两个零点,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】若数列各项均非零,且存在常数,对任意恒成立,则成这样的数列为“类等比数列”,例如等比数列一定为类等比数列,则:

1)各项均非零的等差数列是否可能为“类等比数列”?若可能,请举例;若不能,说明理由;

2)已知数列为“类等比数列”,且,是否存在常数,使得恒成立?

3)已知数列为“类等比数列”,且,求.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】从某居民区随机抽取10个家庭,获得第个家庭的月收入(单位:千元)与月储蓄(单位:千元)的数据资料,算得

1)求家庭的月储蓄对月收入的线性回归方程

2)若该居民区某家庭月收入为7千元,预测该家庭的月储蓄.

(附:线性回归方程中,,其中为样本平均值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数在点处取得极值.

(1)求的值;

(2)若有极大值,求上的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=x3+sin x,x∈(-1,1),则满足f(a2-1)+f(a-1)>0的a的取值范围是( )

A. (0,2)B. (1,)C. (1,2)D. (0,)

查看答案和解析>>

同步练习册答案