精英家教网 > 高中数学 > 题目详情

【题目】已知函数.

(1)讨论的单调性;

(2)若有两个零点,求的取值范围.

【答案】(1)详见解析;(2).

【解析】

(1)由题意知:取得函数的导数,分类讨论,即可求解函数的单调区间;

(2)由(1)知当时,不合题意; 当时,要使得要使有两个零点,必有,构造新函数,利用导数求得函数函数的单调性和最值,即可得到结论.

解:(1)由题意知:

,即时,上单减,在单增

,即时,

时,单增;

时,上单增,在单减,在上单增;

时,上单增,在单减,在上单增.

(2)由(1)知当时,单增,故不可能有两个零点.

时,只有一个零点,不合题意.

时,上单减,在单增,且时,时,.

故只要,解得:.

时,上单增,在单减,在上单增.

因为也不可能有两个零点.

时,上单增,在单减,在上单增

,故要使有两个零点,必有

即当时,有

因为

上单增,且时,

.

故当时,不可能有两个零点.

综上所述:当时,有两个零点.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知函数,且有极大值.

(Ⅰ)求的解析式;

(Ⅱ)若的导函数,不等式为正整数)对任意正实数恒成立,求的最大值.(注:).

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】为更好地落实农民工工资保证金制度,南方某市劳动保障部门调查了年下半年该市名农民工(其中技术工、非技术工各名)的月工资,得到这名农民工月工资的中位数为百元(假设这名农民工的月工资均在(百元)内)且月工资收入在(百元)内的人数为,并根据调查结果画出如图所示的频率分布直方图:

(Ⅰ)求的值;

(Ⅱ)已知这名农民工中月工资高于平均数的技术工有名,非技术工有名,则能否在犯错误的概率不超过的前提下认为是不是技术工与月工资是否高于平均数有关系?

参考公式及数据:,其中

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在路边安装路灯:路宽米,灯杆长米,且与灯柱120°角,路灯采用锥形灯罩,灯罩轴线与灯杆垂直且正好通过道路路面的中线.

1)求灯柱高的长度(精确到0.01米);

2)若该路灯投射出的光成一个圆锥体,该圆锥体母线与轴线的夹角是30°,写出路灯在路面上投射出的截面图形的边界是什么曲线?写出其相应的几何量(精确到0.01米).

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】下列说法错误的是( )

A.在线性回归分析中,相关系数r的值越大,变量间的相关性越强

B.自变量取值一定时,因变量的取值带有一定随机性的两个变量之间的关系叫做相关关系

C.在残差图中,残差点分布的带状区域的宽度越狭窄,其模型拟合的精度越高

D.在问归分析中,0.98的模型比0.80的模型拟合的效果好

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知抛物线过点(为非零常数)轴不垂直的直线C交于两点.

(1)求证:(是坐标原点)

(2)AB的垂直平分线与轴交于,求实数的取值范围;

(3)A关于轴的对称点为D,求证:直线BD过定点,并求出定点的坐标.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】从某中学甲、乙两班各随机抽取 名同学,测量他们的身高(单位: ),所得数据用茎叶图表示如下,由此可估计甲、乙两班同学的身高情况,则下列结论正确的是( )

A. 甲班同学身高的方差较大 B. 甲班同学身高的平均值较大

C. 甲班同学身高的中位数较大 D. 甲班同学身高在 以上的人数较多

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆)的焦距为4,其短轴的两个端点与长轴的一个端点构成正三角形.

(1)求椭圆的标准方程;

(2)设为椭圆的左焦点,直线为椭圆上任意一点,证明:点的距离是点距离的倍.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数

(1)当 ,求函数的极小值;

(2)已知函数处取得极值,求证:

(3)求函数的零点个数.

查看答案和解析>>

同步练习册答案