【题目】已知函数
.
(1)讨论
的单调性;
(2)若
有两个零点,求
的取值范围.
【答案】(1)详见解析;(2)
.
【解析】
(1)由题意知:取得函数的导数,分类讨论,即可求解函数的单调区间;
(2)由(1)知当
和
时,不合题意; 当
时,要使得要使
有两个零点,必有
,构造新函数
,利用导数求得函数函数的单调性和最值,即可得到结论.
解:(1)由题意知:![]()
![]()
若
,即
时,
在
上单减,在
单增
若
,即
时,
当
时,
在
单增;
当
时,
在
上单增,在
单减,在
上单增;
当
时,
在
上单增,在
单减,在
上单增.
(2)由(1)知当
时,
在
单增,故不可能有两个零点.
当
时,
只有一个零点,不合题意.
当
时,
在
上单减,在
单增,且
时,
;
时,
.
故只要
,解得:
.
当
时,
在
上单增,在
单减,在
上单增.
因为
故
也不可能有两个零点.
当
时,
在
上单增,在
单减,在
上单增
且
,故要使
有两个零点,必有![]()
由
![]()
![]()
即当
时,有![]()
因为
![]()
即
在
上单增,且
时,
.
故当
时,
不可能有两个零点.
综上所述:当
时,
有两个零点.
科目:高中数学 来源: 题型:
【题目】为更好地落实农民工工资保证金制度,南方某市劳动保障部门调查了
年下半年该市
名农民工(其中技术工、非技术工各
名)的月工资,得到这
名农民工月工资的中位数为
百元(假设这
名农民工的月工资均在
(百元)内)且月工资收入在
(百元)内的人数为
,并根据调查结果画出如图所示的频率分布直方图:
![]()
(Ⅰ)求
,
的值;
(Ⅱ)已知这
名农民工中月工资高于平均数的技术工有
名,非技术工有
名,则能否在犯错误的概率不超过
的前提下认为是不是技术工与月工资是否高于平均数有关系?
参考公式及数据:
,其中
.
|
|
|
|
|
|
|
|
|
|
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,在路边安装路灯:路宽
米,灯杆长
米,且与灯柱
成120°角,路灯采用锥形灯罩,灯罩轴线
与灯杆垂直且正好通过道路路面的中线.
(1)求灯柱高
的长度(精确到0.01米);
(2)若该路灯投射出的光成一个圆锥体,该圆锥体母线与轴线的夹角是30°,写出路灯在路面上投射出的截面图形的边界是什么曲线?写出其相应的几何量(精确到0.01米).
![]()
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】下列说法错误的是( )
A.在线性回归分析中,相关系数r的值越大,变量间的相关性越强
B.自变量取值一定时,因变量的取值带有一定随机性的两个变量之间的关系叫做相关关系
C.在残差图中,残差点分布的带状区域的宽度越狭窄,其模型拟合的精度越高
D.在问归分析中,
为0.98的模型比
为0.80的模型拟合的效果好
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知抛物线
过点
(
为非零常数)与
轴不垂直的直线
与C交于
两点.
(1)求证:
(
是坐标原点);
(2)AB的垂直平分线与
轴交于
,求实数
的取值范围;
(3)设A关于
轴的对称点为D,求证:直线BD过定点,并求出定点的坐标.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】从某中学甲、乙两班各随机抽取
名同学,测量他们的身高(单位:
),所得数据用茎叶图表示如下,由此可估计甲、乙两班同学的身高情况,则下列结论正确的是( )
![]()
A. 甲班同学身高的方差较大 B. 甲班同学身高的平均值较大
C. 甲班同学身高的中位数较大 D. 甲班同学身高在
以上的人数较多
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆
(
)的焦距为4,其短轴的两个端点与长轴的一个端点构成正三角形.
(1)求椭圆
的标准方程;
(2)设
为椭圆
的左焦点,直线
,
为椭圆上任意一点,证明:点
到
的距离是点
到
距离的
倍.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com