【题目】下列说法错误的是( )
A.在线性回归分析中,相关系数r的值越大,变量间的相关性越强
B.自变量取值一定时,因变量的取值带有一定随机性的两个变量之间的关系叫做相关关系
C.在残差图中,残差点分布的带状区域的宽度越狭窄,其模型拟合的精度越高
D.在问归分析中,为0.98的模型比
为0.80的模型拟合的效果好
科目:高中数学 来源: 题型:
【题目】
已知椭圆和抛物线
有公共焦点F(1,0),
的中心和
的顶点都在坐标原点,过点M(4,0)的直线
与抛物线
分别相交于A,B两点.
(Ⅰ)写出抛物线的标准方程;
(Ⅱ)若,求直线
的方程;
(Ⅲ)若坐标原点关于直线
的对称点
在抛物线
上,直线
与椭圆
有公共点,求椭圆
的长轴长的最小值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知及
.
(1)分别求、
的定义域,并求
的值;
(2)求的最小值并说明理由;
(3)若,
,
,是否存在满足下列条件的正数
,使得对于任意的正数
,
、
、
都可以成为某个三角形三边的长?若存在,则求出
的取值范围;若不存在,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】设函数.
(1)当时,对于一切
,函数
在区间
内总存在唯一零点,求
的取值范围;
(2)当时,数列
的前
项和
,若
是单调递增数列,求
的取值范围;
(3)当,
时,函数
在区间
内的零点为
,判断数列
、
、
、
、
的增减性,并说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如果项有穷数列
满足
,即
,那么称有穷数列
为“对称数列”.例如,由组合数组成的数列
就是“对称数列”.
(1)设数列是项数为7的“对称数列”,其中
成等比数列,且
写出数列
的每一项;
(2)设数列是项数为
的“对称数列”,其中
是公差为2的等差数列,且
求
取得最大值时
的取值,并求最大值;
(3)设数列是项数为
的对称数列”,且满足
记
为数列
的前
项和,若
求
的最小值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】大数据时代对于现代人的数据分析能力要求越来越高,数据拟合是一种把现有数据通过数学方法来代入某条数式的表示方式,比如,
,2,
,n是平面直角坐标系上的一系列点,用函数
来拟合该组数据,尽可能使得函数图象与点列
比较接近.其中一种描述接近程度的指标是函数的拟合误差,拟合误差越小越好,定义函数
的拟合误差为:
.已知平面直角坐标系上5个点的坐标数据如表:
x | 1 | 3 | 5 | 7 | 9 |
y | 12 | 4 | 12 |
若用一次函数
来拟合上述表格中的数据,求该函数的拟合误差
的最小值,并求出此时的函数解析式
;
若用二次函数
来拟合题干表格中的数据,求
;
请比较第
问中的
和第
问中的
,用哪一个函数拟合题目中给出的数据更好?
请至少写出三条理由
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】有一个墙角,两墙面所成二面角的大小为有一块长为
米,宽为
米的矩形木板.用该木板档在墙角处,木板边紧贴墙面和地面,和墙角、地面围成一个直角三棱柱储物仓
.
(1)当为多少米时,储物仓底面三角形
面积最大?
(2)当为多少米时,储物仓的容积最大?
(3)求储物仓侧面积的最大值.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com