精英家教网 > 高中数学 > 题目详情

【题目】下列说法错误的是( )

A.在线性回归分析中,相关系数r的值越大,变量间的相关性越强

B.自变量取值一定时,因变量的取值带有一定随机性的两个变量之间的关系叫做相关关系

C.在残差图中,残差点分布的带状区域的宽度越狭窄,其模型拟合的精度越高

D.在问归分析中,0.98的模型比0.80的模型拟合的效果好

【答案】A

【解析】

线性回归分析中,相关系数r的绝对值越接近1,变量间的相关性越强,故错误,其他选项根据定义知正确,得到答案.

A. 在线性回归分析中,相关系数r的绝对值越接近1,变量间的相关性越强,错误;

B. 根据相关关系的定义知正确;

C. 在残差图中,残差点分布的带状区域的宽度越狭窄,其模型拟合的精度越高,正确;

D. 在问归分析中,的值越大,模型拟合的效果越好,正确;

故选:.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】

已知椭圆和抛物线有公共焦点F(1,0),的中心和的顶点都在坐标原点,过点M40)的直线与抛物线分别相交于A,B两点.

)写出抛物线的标准方程;

)若,求直线的方程;

)若坐标原点关于直线的对称点在抛物线上,直线与椭圆有公共点,求椭圆的长轴长的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知

1)分别求的定义域,并求的值;

2)求的最小值并说明理由;

3)若,是否存在满足下列条件的正数,使得对于任意的正数都可以成为某个三角形三边的长?若存在,则求出的取值范围;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设函数.

1)当时,对于一切,函数在区间内总存在唯一零点,求的取值范围;

2)当时,数列的前项和,若是单调递增数列,求的取值范围;

3)当时,函数在区间内的零点为,判断数列的增减性,并说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

1)若,判断的奇偶性,并说明理由;

2)若,求上的最小值;

3)若有三个不同实根,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

(1)讨论的单调性;

(2)若有两个零点,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如果项有穷数列满足,即,那么称有穷数列为“对称数列”.例如,由组合数组成的数列就是“对称数列”.

(1)设数列是项数为7的“对称数列”,其中成等比数列,且写出数列的每一项;

(2)设数列是项数为的“对称数列”,其中是公差为2的等差数列,且取得最大值时的取值,并求最大值;

(3)设数列是项数为的对称数列”,且满足为数列的前项和,若的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】大数据时代对于现代人的数据分析能力要求越来越高,数据拟合是一种把现有数据通过数学方法来代入某条数式的表示方式,比如2n是平面直角坐标系上的一系列点,用函数来拟合该组数据,尽可能使得函数图象与点列比较接近.其中一种描述接近程度的指标是函数的拟合误差,拟合误差越小越好,定义函数的拟合误差为:.已知平面直角坐标系上5个点的坐标数据如表:

x

1

3

5

7

9

y

12

4

12

若用一次函数来拟合上述表格中的数据,求该函数的拟合误差的最小值,并求出此时的函数解析式

若用二次函数来拟合题干表格中的数据,求

请比较第问中的和第问中的,用哪一个函数拟合题目中给出的数据更好?请至少写出三条理由

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】有一个墙角,两墙面所成二面角的大小为有一块长为米,宽为米的矩形木板.用该木板档在墙角处,木板边紧贴墙面和地面,和墙角、地面围成一个直角三棱柱储物仓

(1)当为多少米时,储物仓底面三角形面积最大?

(2)当为多少米时,储物仓的容积最大?

(3)求储物仓侧面积的最大值.

查看答案和解析>>

同步练习册答案