精英家教网 > 高中数学 > 题目详情
在正方体ABCD-A1B1C1D1各个表面的12条对角线中,与BD1垂直的有    条.
【答案】分析:利用线面垂直的判定定理和性质定理,证明AC⊥平面BD1,从而AC⊥BD1,同理可证明A1C1,A1D,B1C,AB1,DC1,都与直线BD1垂直,即可得正确结果
解答:解:如图:BD1为正方体的体对角线,∵AC⊥BD,AC⊥BB1,∴AC⊥平面BD1,∴AC⊥BD1,同理
A1C1,A1D,B1C,AB1,DC1,都与直线BD1垂直
∴与BD1垂直的各个表面的12条对角线中有AC、A1C1,A1D,B1C,AB1,DC1,共6条直线
故答案为 6
点评:本题考查了空间想象能力,考查了空间线面、面面,线线相互垂直的位置关系,所得结果尽量记住.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

16、在正方体ABCD-A′B′C′D′中,过对角线BD′的一个平面交AA′于E,交CC′于F,则
①四边形BFD′E一定是平行四边形;
②四边形BFD′E有可能是正方形;
③四边形BFD′E在底面ABCD内的投影一定是正方形;
④平面BFD′E有可能垂直于平面BB′D.
以上结论正确的为
①③④
.(写出所有正确结论的编号)

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,在正方体ABCD-A′B′C′D′中,E为D′C′的中点,则二面角E-AB-C的大小为
45°
45°

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,在正方体ABCD-A′B′C′D′中,E,F分别是AB′,BC′的中点. 
(1)若M为BB′的中点,证明:平面EMF∥平面ABCD.
(2)求异面直线EF与AD′所成的角.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图在正方体ABCD-A  1B1C1D1中,O是底面ABCD的中心,B1H⊥D1O,H为垂足,则B1H与平面AD1C的位置关系是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

在正方体ABCD-A′B′C′D′中,过对角线BD′的一个平面交棱AA′于E,交棱CC′于F,则:
①四边形BFD′E一定是平行四边形;
②四边形BFD′E有可能是正方形;
③四边形BFD′E有可能是菱形;
④四边形BFD′E有可能垂直于平面BB′D.
其中所有正确结论的序号是
 

查看答案和解析>>

同步练习册答案