精英家教网 > 高中数学 > 题目详情
若椭圆
x2
a2
+
y2
b2
=1的焦点在x轴上,过点(1,
1
2
)作圆x2+y2=1的切线,切点分别为A,B,直线AB恰好经过椭圆的右焦点和上顶点,则椭圆方程是
x2
5
+
y2
4
=1
x2
5
+
y2
4
=1
分析:设过点(1,
1
2
)的圆x2+y2=1的切线为l,根据直线的点斜式,结合讨论可得直线l分别切圆x2+y2=1相切于点A(1,0)和B(0,2).然后求出直线AB的方程,从而得到直线AB与x轴、y轴交点坐标,得到椭圆的右焦点和上顶点,最后根据椭圆的基本概念即可求出椭圆的方程.
解答:解:设过点(1,
1
2
)的圆x2+y2=1的切线为l:y-
1
2
=k(x-1),即kx-y-k+
1
2
=0
①当直线l与x轴垂直时,k不存在,直线方程为x=1,恰好与圆x2+y2=1相切于点A(1,0);
②当直线l与x轴不垂直时,原点到直线l的距离为:d=
|-k+
1
2
|
k2+1
=1,解之得k=-
3
4

此时直线l的方程为y=-
3
4
x+
5
4
,l切圆x2+y2=1相切于点B(
3
5
4
5
);
因此,直线AB斜率为k1=
0-
4
5
1-
3
5
=-2,直线AB方程为y=-2(x-1)
∴直线AB交x轴交于点A(1,0),交y轴于点C(0,2).
椭圆
x2
a2
+
y2
b2
=1的右焦点为(1,0),上顶点为(0,2)
∴c=1,b=2,可得a2=b2+c2=5,椭圆方程为
x2
5
+
y2
4
=1

故答案为:
x2
5
+
y2
4
=1
点评:本题考查椭圆的简单性质、圆的切线的性质、椭圆中三参数的关系:a2=b2+c2
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

若椭圆
x2
a2
+y2=1(a>0)的一条准线经过抛物线y2=-8x的焦点,则该椭圆的离心率为(  )
A、
1
2
B、
1
3
C、
3
2
D、
2
2

查看答案和解析>>

科目:高中数学 来源: 题型:

若椭圆
x2
a2
+y2=1(a>0)
与双曲线
x2
2
-y2=1
有相同的焦点,则a=
2
2

查看答案和解析>>

科目:高中数学 来源: 题型:

(2011•西城区一模)双曲线C:
x2
2
-y2=1
的离心率为
6
2
6
2
;若椭圆
x2
a2
+y2=1(a>0)
与双曲线C有相同的焦点,则a=
2
2

查看答案和解析>>

科目:高中数学 来源:南京模拟 题型:单选题

若椭圆
x2
a2
+y2=1(a>0)的一条准线经过抛物线y2=-8x的焦点,则该椭圆的离心率为(  )
A.
1
2
B.
1
3
C.
3
2
D.
2
2

查看答案和解析>>

科目:高中数学 来源:西城区一模 题型:填空题

双曲线C:
x2
2
-y2=1
的离心率为______;若椭圆
x2
a2
+y2=1(a>0)
与双曲线C有相同的焦点,则a=______.

查看答案和解析>>

同步练习册答案