精英家教网 > 高中数学 > 题目详情
20.沿直线运动的汽车刹车后匀减速运动,经3.5s停止,它在刹车开始后的第1s内,第2s内,第3s内的位移之比为多少?

分析 设出汽车的初速度,求出它在刹车开始后的1s内,2s内,3s内的位移,可得答案.

解答 解:设汽车刹车后的加速度为-a,
则汽车的初速度为V=3.5a,
则它在刹车开始后的1s内的位移为:3.5a-$\frac{1}{2}$a=3a;
它在刹车开始后的2s内的位移为:3.5a×2-$\frac{1}{2}$a×22-3a=2a;
它在刹车开始后的3s内的位移为:3.5a×3-$\frac{1}{2}$a×32-3a-2a=a;
故它在刹车开始后的1s内,2s内,3s内的位移之比为3:2:1

点评 本题考查的知识点是二次函数的性质,熟练掌握匀减速运动位移公式S=Vt+$\frac{1}{2}{at}^{2}$是解答的关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

10.已知f(x)为定义在(-1,1)上的奇函数,当x∈(0,1)时,f(x)=$\frac{{2}^{x}}{{4}^{x}+1}$.
(1)求f(x)在(-1,1)上的解析式;
(2)判断f(x)在(-1,1)上的单调性,并给予证明.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.设曲线$\sqrt{\frac{{x}^{2}}{4{n}^{2}}}$+$\sqrt{{y}^{2}}$=1(n∈N*)所围成的平面区域Dn,记Dn内(含区域边界)的整点(整点即纵、横坐标均为整数的点)个数为an,数列{an}的前n项和为Sn
(1)若a∈N*,且$\frac{{S}_{n}}{2n+5}$+$\frac{32}{{a}_{n}+1}$≥a恒成立,求a的最大值;
(2)在(1)a取最大值的条件下,当bn=$\frac{(a-2)^{n}•{S}_{n}}{(2n+5)}$时,求数列{bn}的前n项和Tn

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.设x、y∈R,则命题“x2+y2>1”是命题“|x|+|y|>1”的(  )
A.充分非必要条件B.必要非充分条件
C.充要条件D.既非充分也非必要条件

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.已知a是方程xlgx=3的解,b是方程x•10x=3的解,则a•b=(  )
A.3B.4C.6D.8

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.若log4[log3(1og2x)]=0,则x${\;}^{-\frac{1}{2}}$等于(  )
A.$\frac{\sqrt{2}}{4}$B.$\frac{\sqrt{2}}{2}$C.8D.4

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.已知△ABC的三边分别为a,b,c且a=2,∠A=45°,S△ABC=2,则△ABC的外接圆的周长为2$\sqrt{2}$π.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.如图所示,过抛物线C:x2=4y的对称轴上一点P(0,m)(m>0)作直线l与抛物线交于A(x1,y1),B(x2,y2)两点,点Q是点P关于原点的对称点.
(Ⅰ) 求证:x1x2=-4m;
(Ⅱ) 若$\overrightarrow{AP}$=λ$\overrightarrow{PB}$,且$\overrightarrow{QP}$⊥($\overrightarrow{QA}$-μ$\overrightarrow{QB}$),求证:λ=μ.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.在△ABC中,角A、B、C所对的边分别为a,b,c若2acosB=c,则2cos2$\frac{A}{2}$+sinB-1的取值范围是 (  )
A.[-$\sqrt{2}$,$\sqrt{2}$]B.[1,$\sqrt{2}$]C.(0,$\sqrt{2}$]D.(-1,$\sqrt{2}$]

查看答案和解析>>

同步练习册答案