精英家教网 > 高中数学 > 题目详情
已知椭圆过点,其长轴、焦距和短轴的长的平方依次成等差数列.
(Ⅰ)求椭圆的标准方程;
(Ⅱ)若直线与轴正半轴、轴分别交于点,与椭圆分别交于点,各点均不重合,且满足. 当时,试证明直线过定点.过定点(1,0)
(1)
(2)结合向量关系式,以及韦达定理,来分析直线的方程,进而得到定点坐标。

试题分析:解:(Ⅰ)设椭圆的焦距为                        1分
由题意知,且
所以椭圆方程为.                                   4分
(Ⅱ)由题意设的方程为       5分
6分
同理由
,∴   (1)            7分
联立,                          8分
只需    (2)
且有     (3)                     9分
把(3)代入(1)得且满足(2),              10分
依题意,,故
从而的方程为,即直线过定点(1,0)                              12分
点评:主要是考查了直线与椭圆的位置关系的运用,代数法来设而不求的解题思想是解析几何的本质,属于中档题。
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

已知椭圆C:的长轴长为,离心率
Ⅰ)求椭圆C的标准方程;
Ⅱ)若过点B(2,0)的直线(斜率不等于零)与椭圆C交于不同的两点E,F(E在B,F之间),且OBE与OBF的面积之比为,求直线的方程.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

椭圆的离心率为,两焦点分别为,点M是椭圆C上一点,的周长为16,设线段MO(O为坐标原点)与圆交于点N,且线段MN长度的最小值为.
(1)求椭圆C以及圆O的方程;
(2)当点在椭圆C上运动时,判断直线与圆O的位置关系.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

已知抛物线y2=4x的准线过双曲线=1(a>0,b>0)的左顶点,且此双曲线的一条渐
近线方程为y=2x,则双曲线的焦距等于 (  ).
A.B.2C.D.2

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知中心在原点的双曲线C的右焦点为(2,0),右顶点为
(1)求双曲线C的方程;
(2)若直线与双曲线C恒有两个不同的交点A和B,且(其中O为原点). 求k的取值范围.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

如图,在△ABC中,∠CAB=∠CBA=30°,AC、BC边上的高分别为BD、AE,则以A、B为焦点,且过D、E的椭圆与双曲线的离心率分别为,则     

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

在平面直角坐标系中,点到两点的距离之和为,设点的轨迹为曲线.
(1)写出的方程;
(2)设过点的斜率为)的直线与曲线交于不同的两点,,点轴上,且,求点纵坐标的取值范围.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

设椭圆的右焦点为,直线轴交于点,若(其中为坐标原点).
(I)求椭圆的方程;
(II)设是椭圆上的任意一点,为圆的任意一条直径(为直径的两个端点),求的最大值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

过双曲线)的右焦点作圆的切线,交轴于点,切圆于点,若,则双曲线的离心率是(   )
A.B.C.D.

查看答案和解析>>

同步练习册答案