精英家教网 > 高中数学 > 题目详情
设椭圆的右焦点为,直线轴交于点,若(其中为坐标原点).
(I)求椭圆的方程;
(II)设是椭圆上的任意一点,为圆的任意一条直径(为直径的两个端点),求的最大值.
(I)椭圆的方程为
(II)当时,,故

试题分析:(I)由题设知,, 由
.解得.所以椭圆的方程为
(II)方法1:设点,因为的中点坐标为
所以所以


因为点在圆上,所以,即
因为点在椭圆上,所以,即

因为,所以当时,
法2:由题知圆N: 的圆心为N;则

从而求的最大值转化为求的最大值;
因为点在椭圆上,设点所以,即
又因为,所以
因为,所以当时,,故
方法3:①若直线的斜率存在,设的方程为
,解得.因为是椭圆上的任一点,设点
所以,即.所以

因为,所以当时,,故
②若直线EF的斜率不存在,此时EF的方程为; 由,解得
不妨设E(0,3),F(0,1); 因为点在椭圆上,设点所以,即
所以,故
因为,所以当时,,故
点评:难题,求椭圆的标准方程,主要运用了椭圆的几何性质,注意明确焦点轴和a,b,c的关系。曲线关系问题,往往通过联立方程组,得到一元二次方程,运用韦达定理。本题(2)注意讨论直线的斜率存在、不存在两种情况,易于忽视。熟练进行平面向量的坐标运算,是正确解题的关键。
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

已知椭圆过点,其长轴、焦距和短轴的长的平方依次成等差数列.
(Ⅰ)求椭圆的标准方程;
(Ⅱ)若直线与轴正半轴、轴分别交于点,与椭圆分别交于点,各点均不重合,且满足. 当时,试证明直线过定点.过定点(1,0)

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

过直线y=﹣1上的动点A(a,﹣1)作抛物线y=x2的两切线AP,AQ,P,Q为切点.
(1)若切线AP,AQ的斜率分别为k1,k2,求证:k1•k2为定值.
(2)求证:直线PQ过定点.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

曲线C:,(为参数)的普通方程为               (     )
A.B.
C.D.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,已知F1、F2分别为椭圆C1的上、下焦点,其中F1也是抛物线C2的焦点,点A是曲线C1,C2在第二象限的交点,且

(Ⅰ)求椭圆1的方程;
(Ⅱ)已知P是椭圆C1上的动点,MN是圆C:的直径,求的最大值和最小值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

在直角坐标系xOy中,直线l的方程为x-y+4=0,曲线C的参数方程为 
(Ⅰ)已知在极坐标(与直角坐标系xOy取相同的长度单位,且以原点O为极点,以x轴正半轴为极轴)中,点P的极坐标为,判断点P与直线l的位置关系;
(Ⅱ)设点Q是曲线C上的一个动点,求它到直线l的距离的最值;
(Ⅲ)请问是否存在直线 ,∥l且与曲线C的交点A、B满足
若存在请求出满足题意的所有直线方程,若不存在请说明理由。

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知中心在坐标原点焦点在轴上的椭圆C,其长轴长等于4,离心率为
(Ⅰ)求椭圆C的标准方程;
(Ⅱ)若点(0,1), 问是否存在直线与椭圆交于两点,且?若存在,求出的取值范围,若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知极坐标系的极点为直角坐标系的原点,极轴为x轴的正半轴,两种坐标系中的长度单位相同,已知曲线的极坐标方程为
(1)求的直角坐标方程;
(2)直线为参数)与曲线C交于两点,与轴交于,求的值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

已知是过抛物线焦点的弦,,则中点的横坐标是        

查看答案和解析>>

同步练习册答案