精英家教网 > 高中数学 > 题目详情
过双曲线)的右焦点作圆的切线,交轴于点,切圆于点,若,则双曲线的离心率是(   )
A.B.C.D.
D

试题分析:如图,由(平行四边形法则)知,点M是的中点,因为点为切点,所以,则,所以,由得,,所以。故选D。

点评:解决平面几何的题目,首先是画图。当题目出现曲线的方程时,假如不是标准形式,则需要将其变成标准形式。
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

已知椭圆过点,其长轴、焦距和短轴的长的平方依次成等差数列.
(Ⅰ)求椭圆的标准方程;
(Ⅱ)若直线与轴正半轴、轴分别交于点,与椭圆分别交于点,各点均不重合,且满足. 当时,试证明直线过定点.过定点(1,0)

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知中心在坐标原点焦点在轴上的椭圆C,其长轴长等于4,离心率为
(Ⅰ)求椭圆C的标准方程;
(Ⅱ)若点(0,1), 问是否存在直线与椭圆交于两点,且?若存在,求出的取值范围,若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知极坐标系的极点为直角坐标系的原点,极轴为x轴的正半轴,两种坐标系中的长度单位相同,已知曲线的极坐标方程为
(1)求的直角坐标方程;
(2)直线为参数)与曲线C交于两点,与轴交于,求的值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

已知双曲线的左右焦点分别是,设是双曲线右支上一点,上投影的大小恰好为,且它们的夹角为,则双曲线的离心率为(    )
A.B.C.D.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

抛物线的焦点为F,点为该抛物线上的动点,又点的最小值是
A.B.C.D.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

分别是椭圆的左,右焦点。
(Ⅰ)若是第一象限内该椭圆上的一点,且,求点的坐标。
(Ⅱ)设过定点的直线与椭圆交于不同的两点,且为锐角(其中O为坐标原点),求直线的斜率的取值范围。

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

已知是过抛物线焦点的弦,,则中点的横坐标是        

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

已知过抛物线y2 =2px(p>0)的焦点F的直线x-my+m=0与抛物线交于A,B两点,且△OAB(O为坐标原点)的面积为2,则m6+ m4的值为(   )
A.1B. 2 C.3D.4

查看答案和解析>>

同步练习册答案