精英家教网 > 高中数学 > 题目详情

如图,在四棱柱ABCD-A1B1C1D1中,DD1⊥面ABCD已知DC=DD1=2AD=2AB,AD⊥DC,AB∥DC.
(1)设E是DC的中点,求证:D1E∥平面A1BD;
(2)求二面角A1-BD-C1的余弦值.
(3)求点C到面A1BD的距离.

证明:(1)连接BE,则四边形DABE为正方形,
∴BE=AD=A1D1,且BE∥AD∥A1D1
∴四边形A1D1EB为平行四边形,∴D1E∥A1B.
∵D1E?平面A1BD,A1B?平面A1BD,∴D1E∥平面A1BD.
解:(2)以D为原点,DA,DC,DD1所在直线分别为x轴、y轴、z轴,建立空间直角坐标系,不妨设DA=1,
则D(0,0,0),A(1,0,0),B(1,1,0),C1(0,2,2),A1(1,0,2).

为平面A1BD的一个法向量,
,取z=1,则
为平面C1BD的一个法向量,
,取z1=1,则.
由于该二面角A1-BD-C1为锐角,所以所求的二面角A1-BD-C1的余弦值为
(3)∵C(0,2,0),∴
∴点C到面A1BD的距离
分析:(1)连接BE,由已知中DC=2AD=2AB,AD⊥DC,我们易得四边形DABE为正方形,进而可证得四边形A1D1EB为平行四边形,则D1E∥A1B,由线面平行的判定定理,可得D1E∥平面A1BD;
(2)以D为原点,DA,DC,DD1所在直线分别为x轴、y轴、z轴,建立空间直角坐标系,设DA=1,求出平面A1BD的一个法向量和平面C1BD的一个法向量,代入向量夹角公式,即可得到二面角A1-BD-C1的余弦值.
(3)由(2)中的平面A1BD的一个法向量,代入点到平面距离公式,即可求出点C到面A1BD的距离.
点评:本题考查的知识点是与二面角有关的立体几何综合题,直线与平面平行的判定,点到平面之间的距离,其中(1)的关键是证得D1E∥A1B,(2)、(3)的关键是建立空间坐标系,将二面角问题及点到平面的距离转化为用向量法解答.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

如图,在三棱柱ABC-A1B1C1中,侧棱AA1⊥底面ABC,AB⊥BC,D为AC的中点,AA1=AB=2,四棱锥B-AA1C1D的体积为3.
(1)求证:AB1∥平面BC1D;
(2)求直线A1C1与平面BDC1所成角的正弦值;
(3)求二面角C-BC1-D的正切值.

查看答案和解析>>

科目:高中数学 来源: 题型:

精英家教网如图,在四棱柱ABC-A1B1C1D1中,AA1⊥底面ABCD,底面ABCD是菱形,∠DAB=60°,AA1=4,AB=2,点E在棱CC1上,点E是棱C1C上一点.
(1)求证:无论E在任何位置,都有A1E⊥BD
(2)试确定点E的位置,使得A1-BD-E为直二面角,并说明理由.
(3)当E为CC1中点时,求四面体A1-BDE的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:

精英家教网如图,在四棱柱ABC-A1B1C1D1中,AA1⊥底面ABCD,底面ABCD是菱形,∠DAB=60°,AA1=4,AB=2,点E在棱CC1上,点E是棱C1C上一点.
(1)求证:无论E在任何位置,都有A1E⊥BD
(2)试确定点E的位置,使得A1-BD-E为直二面角,并说明理由.
(3)试确定点E的位置,使得四面体A1-BDE体积最大.并求出体积的最大值.

查看答案和解析>>

科目:高中数学 来源:四川省仁寿一中2012届高三12月月考数学理科试题 题型:044

如图,在四棱柱ABC-A1B1C1D1中,AA1⊥底面ABCD,底面ABCD是菱形,∠DAB=60°,AA1=4,AB=2,点E在棱CC1上,点F是棱C1D1的中点.

(1)若点E是棱CC1的中点,求证:EF∥平面A1BD;

(2)试确定点E的位置,使得A1-BD-E为直二面角,并说明理由.

查看答案和解析>>

科目:高中数学 来源:四川省仁寿一中2012届高三12月月考数学文科试题 题型:044

如图,在四棱柱ABC-A1B1C1D1中,AA1⊥底面ABCD,底面ABCD是菱形,∠DAB=60°,AA1=4,AB=2,点E在棱CC1上,点F是棱C1D1的中点.

(1)若点E是棱CC1的中点,求证:EF∥平面A1BD;

(2)试确定点E的位置,使得A1-BD-E为直二面角,并说明理由.

查看答案和解析>>

同步练习册答案