精英家教网 > 高中数学 > 题目详情
设数列{an},a1=1,an+1=
an
3
+
1
3n
.数列{bn},bn=3n-1an.正数数列{dn},dn2=1+
1
bn2
+
1
bn+12

(1)求证:数列{bn}为等差数列;
(2)设数列{bn},{dn}的前n项和分别为Bn,Dn,求数列{bnDn+dnBn-bndn}的前n项和Sn
考点:数列的求和
专题:点列、递归数列与数学归纳法
分析:(1)根据等差数列的定义即可证明数列{bn}为等差数列;
(2)求出数列{bn},{dn}的前n项和分别为Bn,Dn,利用裂项法即可得到结论.
解答: 解:(1)由an+1=
an
3
+
1
3n
.得3nan+1=3n-1an+1
又bn=3n-1an
所以bn+1=bn+1,
又b1=a1=1,所以数列{bn}是以1为首项,1为公差的等差数列.
(2)由(1)得bn=1+(n-1)×1=n,Bn=
n(n+1)
2

因为dn2=1+
1
bn2
+
1
bn+12

所以dn2=1+
1
bn2
+
1
bn+12
=1+
2n(n+1)+1
n2(n+1)2
=[1+
1
n(n+1)
]2
由dn>0,得dn=1+
1
n(n+1)
=1+
1
n
-
1
n+1

于是,Dn=n+1-
1
n+1

又当n≥2时,
bnDn+dnBn-bndn=(Bn-Bn-1)Dn+(Dn-Dn-1)Bn-(Bn-Bn-1)(Dn-Dn-1)=BnDn-Bn-1Dn-1
所以Sn=(BnDn-Bn-1Dn-1)+(Bn-1Dn-1-Bn-2Dn-2)+…+(B2D2-B1D1)+B1D1=BnDn…14分
因S1=b1D1+d1B1-b1d1=B1D1也适合上式,故对于任意的n∈N*,都有Sn=BnDn
所以Sn=BnDn=
n(n+1)
2
•(n+1-
1
n+1
)=
1
2
(n3+2n2).
点评:本题主要考查递推数列的应用,以及等差数列的判断,考查学生的运算能力,综合性较强,难度较大.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

对任意的实数k,直线y=kx+1与圆x2+y2=2的位置关系是(  )
A、相离B、相切
C、相交D、随k的变化而变化

查看答案和解析>>

科目:高中数学 来源: 题型:

若(1+ex)2014=a0+a1x+a2x2+…+a2014x2014(x∈R),则-
a1
e
+
a2
e2
-…+
a2014
e2014
(  )
A、eB、1C、-1D、-e

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=
x
4
+
a
x
-lnx-
3
2
,其中a∈R,且曲线y=f(x)在点(1,f(1))处的切线垂直于直线y=
1
2
x.
(Ⅰ)求a的值;
(Ⅱ)求函数f(x)的单调区间与极值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)满足f(x+2)=f(x),当-1<x≤0时f(x)=e-x;当0<x≤1时,f(x)=4x2-4x+1.
(Ⅰ)求函数f(x)在(-1,1)上的单调区间;
(Ⅱ)若g(x)=f(x)-kx(k>0),求函数g(x)在[0,3]上的零点个数.

查看答案和解析>>

科目:高中数学 来源: 题型:

在△ABC中,a,b,c分别是三个内角A,B,C的对边,a=3,cos
A+C
2
=
3
3
,且△ABC面积是2
2

(1)求cosB的值;
(2)求b,c.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知椭圆
x2
a2
+
y2
b2
=1(a>b>0)的离心率e=
5
3
,且直线y=x+
b
2
是抛物线y2=4x的一条切线.
(1)求椭圆的方程;
(2)点P(x0,y0)为椭圆上一点,直线l:
x0x
9
+
y0y
4
=1,判断l与椭圆的位置关系并给出理由;
(3)过椭圆上一点P作椭圆的切线交直线x=
9
5
5
于点A,试判断线段AP为直径的圆是否恒过定点,若是,求出定点坐标;若不是,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图所示,四边形PDCE为矩形,四边形ABCD为直角梯形,且∠BAD=∠ADC=90°,平面PDCE⊥平面ABCD,AB=AD=
1
2
CD=1,PD=
2

(Ⅰ)若M为PA中点,求证:AC∥平面MDE;
(Ⅱ)求该几何体被平面PBD所分成的两部分的体积比.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,在四棱锥P-ABCD中,PA⊥底面ABCD,AD⊥AB,AB∥DC,AD=DC=AP=2,AB=1,点E为棱PC的中点.
(Ⅰ)证明:BE⊥DC;
(Ⅱ)求直线BE与平面PBD所成角的正弦值;
(Ⅲ)若F为棱PC上一点,满足BF⊥AC,求二面角F-AB-P的余弦值.

查看答案和解析>>

同步练习册答案