精英家教网 > 高中数学 > 题目详情
椭圆有两顶点A(﹣1,0)、B(1,0),过其焦点F(0,1)的直线l与椭圆交于C、D两点,并与x轴交于点P.直线AC与直线BD交于点Q.

(Ⅰ)当|CD|=时,求直线l的方程;
(Ⅱ)当点P异于A、B两点时,求证:为定值.
(Ⅰ)y=x+1(Ⅱ)见解析

试题分析:(Ⅰ)根据椭圆有两顶点A(﹣1,0)、B(1,0),焦点F(0,1),可知椭圆的焦点在y轴上,b=1,c=1,,可以求得椭圆的方程,联立直线和椭圆方程,消去y得到关于x的一元二次方程,利用韦达定理和弦长公式可求出直线l的方程;
(Ⅱ)根据过其焦点F(0,1)的直线l的方程可求出点P的坐标,该直线与椭圆交于C、D两点,和直线AC与直线BD交于点Q,求出直线AC与直线BD的方程,解该方程组即可求得点Q的坐标,代入即可证明结论.
(Ⅰ)∵椭圆的焦点在y轴上,设椭圆的标准方程为(a>b>0),
由已知得b=1,c=1,所以a=
椭圆的方程为
当直线l与x轴垂直时与题意不符,
设直线l的方程为y=kx+1,C(x1,y1),D(x2,y2),
将直线l的方程代入椭圆的方程化简得(k2+2)x2+2kx﹣1=0,
则x1+x2=﹣,x1•x2=﹣
∴|CD|==
==
解得k=
∴直线l的方程为y=x+1;
(Ⅱ)证明:当直线l与x轴垂直时与题意不符,
设直线l的方程为y=kx+1,(k≠0,k≠±1),C(x1,y1),D(x2,y2),
∴P点的坐标为(﹣,0),
由(Ⅰ)知x1+x2=﹣,x1•x2=﹣
且直线AC的方程为y=,且直线BD的方程为y=
将两直线联立,消去y得
∵﹣1<x1,x2<1,∴异号,
=
=
y1y2=k2x1x2+k(x1+x2)+1==﹣
与y1y2异号,同号,
=,解得x=﹣k,
故Q点坐标为(﹣k,y0),
=(﹣,0)•(﹣k,y0)=1,
为定值.
点评:此题是个难题.本题考查了椭圆的标准方程和简单的几何性质、直线与圆锥曲线的位置关系,是一道综合性的试题,考查了学生综合运用知识解决问题的能力.体现了分类讨论和数形结合的思想
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:单选题

设椭圆的焦点在轴上,,则这样的椭圆个数共有                                                    (   )
                                       

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

设整数是平面直角坐标系中的点,其中
(1)记为满足的点的个数,求
(2)记为满足是整数的点的个数,求

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(18分)已知平面上的线段及点,在上任取一点,线段长度的最小值称为点到线段的距离,记作
⑴ 求点到线段的距离
⑵ 设是长为2的线段,求点集所表示图形的面积;
⑶ 写出到两条线段距离相等的点的集合,其中
是下列三组点中的一组。对于下列三组点只需选做一种,满分分别是①2分,②6分,③8分;若选择了多于一种的情形,则按照序号较小的解答计分。


③ 

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本小题满分14分)椭圆E中心在原点O,焦点在x轴上,其离心率e=,过点C(-1,0)的直线l与椭圆E相交于AB两点,且C分有向线段的比为2.
(1)用直线l的斜率k(k≠0)表示△OAB的面积;
(2)当△OAB的面积最大时,求椭圆E的方程.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本小题满分13分)
已知椭圆上的一动点到右焦点的最短距离为,且右焦点到右准线的距离等于短半轴的长.
(Ⅰ) 求椭圆的方程;
(Ⅱ) 过点()的动直线交椭圆两点,试问:在坐标平面上是否存在一个定点,使得无论如何转动,以为直径的圆恒过定点?若存在,求出点的坐标;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

已知的左、右焦点,是椭圆上位于第一象限内的一点,点也在椭圆 上,且满足为坐标原点),,若椭圆的离心率等于, 则直线的方程是  ( ▲ ) .
A.B.C.D.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

已知双曲线的左、右焦点分别为,抛物线的顶点在原点,它的准线与双曲线的左准线重合,若双曲线与抛物线的交点满足,则双曲线的离心率为         .

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

已知双曲线上一点到点的距离是20,则点到点的距离是 --------

查看答案和解析>>

同步练习册答案