精英家教网 > 高中数学 > 题目详情
17.不等式组$\left\{\begin{array}{l}{x+y≤2}\\{x≥0}\\{y≥0}\end{array}\right.$表示的平面区域的面积是(  )
A.1B.2C.4D.5

分析 画出约束条件式组$\left\{\begin{array}{l}x+y≤2\\ x≥0\\ y≥0\end{array}\right.$所表示的可行域,要求所表示的平面区域的面积就是图中三角形所在区域面积,求解即可

解答 解:不等式组式组$\left\{\begin{array}{l}x+y≤2\\ x≥0\\ y≥0\end{array}\right.$所表示的平面区域就是图中阴影部分,

它所表示的平面区域的面积,等于图中阴影部分面积,
其图形是一个等腰直角三角形.其中A(2,0),B(0,2),
∴S=$\frac{1}{2}$×2×2=2.
故选:B.

点评 本题考查二元一次不等式(组)与平面区域,考查转化思想,数形结合思想,是基础题.解答的关键是画出不等式组表示的平面区域.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

7.已知f(x)=x|x-a|-2,当x∈(0,2]时恒有f(x)<0,则实数a的取值范围是1<a<3.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.椭圆焦距为8,离心率e=0.8,求该椭圆的标准方程.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.下列命题中,正确的命题个数是6.
①ac2>bc2⇒a>b
②a≥b⇒ac2≥bc2
③$\frac{a}{c}$>$\frac{b}{c}$⇒ac>bc
④若a<b<0,则a2>ab>b2
⑤$\left\{\begin{array}{l}{a>b}\\{ac>bc}\end{array}\right.$⇒c>0;
⑥$\left\{\begin{array}{l}{a>b}\\{\frac{1}{a}>\frac{1}{b}}\end{array}\right.$⇒a>0,b<0.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.△ABC的三个顶点分别为A(1,0),B(1,4),C(3,2),直线l经过点D(0,4).
(1)判断△ABC的形状;
(2)求△ABC外接圆M的方程;
(3)若直线l与圆M相交于P,Q两点,且PQ=2$\sqrt{3}$,求直线l的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.下列函数在(0,+∞)上是增函数的是(  )
A.$y={({\frac{1}{3}})^x}$B.y=-2x+5C.y=lnxD.y=$\frac{3}{x}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.已知复数z满足:|z|=1+3i-z.
(Ⅰ)求复数z;
(Ⅱ)若z1=$\frac{(1+i)^{2}(-7+24i)}{2z}$,求$\overline{{z}_{1}}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.已知定义域为R的偶函数f(x)在区间[0,+∞)上是单调减函数,若f(1)<f(lnx),则x的取值范围是$(\frac{1}{e},e)$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.已知定义在R上的偶函数f(x)满足f(1)=1,且对于任意的x>0,f′(x)<x恒成立,则不等式f(x)<$\frac{1}{2}$x2+$\frac{1}{2}$的解集为(  )
A.(-∞,1)B.(1,+∞)C.(-1,1)D.(-∞,-1)∪(1,+∞)

查看答案和解析>>

同步练习册答案