精英家教网 > 高中数学 > 题目详情
7.已知定义在R上的偶函数f(x)满足f(1)=1,且对于任意的x>0,f′(x)<x恒成立,则不等式f(x)<$\frac{1}{2}$x2+$\frac{1}{2}$的解集为(  )
A.(-∞,1)B.(1,+∞)C.(-1,1)D.(-∞,-1)∪(1,+∞)

分析 令g(x)=f(x)-$\frac{1}{2}$x2-$\frac{1}{2}$,求导g′(x)=f′(x)-x,从而确定不等式的解集.

解答 解:令g(x)=f(x)-$\frac{1}{2}$x2-$\frac{1}{2}$,
g′(x)=f′(x)-x,
∵对任意的x∈R.都有f′(x)<x成立,
∴对任意的x∈R,g′(x)<0,
∴g(x)=f(x)-$\frac{1}{2}$x2-$\frac{1}{2}$在R上是减函数,
且g(1)=f(1)-$\frac{1}{2}$-$\frac{1}{2}$=0,
故不等式f(x)<$\frac{1}{2}$x2+$\frac{1}{2}$的解集为(1,+∞),
故选B.

点评 本题考查了导数的综合应用及函数的性质的判断与应用.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

17.不等式组$\left\{\begin{array}{l}{x+y≤2}\\{x≥0}\\{y≥0}\end{array}\right.$表示的平面区域的面积是(  )
A.1B.2C.4D.5

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.已知集合A={a1,a2,…,an}(n>2),令TA={x|x=ai+aj,1≤i<j≤n},card(TA)表示集合TA中元素的个数.关于card(TA)有下列两个命题
①若a1,a2,…,an(n>2)可构成公差不为0的等差数列,则card(TA)=2n-3;
②若a1,a2,…,an(n>2)可构成公比不为1的等比数列,则$card({T_A})=\frac{1}{2}n(n-1)$.
其中,正确的是(  )
A.B.C.①②D.都不正确

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.已知A(cosx,0),B(0,1-cosx),则$|{\overrightarrow{AB}}|$的最小值是(  )
A.$\frac{1}{2}$B.$\frac{{\sqrt{2}}}{2}$C.$\frac{{\sqrt{3}}}{2}$D.1

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.已知函数f(x)为R上的增函数,且对于任意实数x,都有f[f(x)-3x]=4,则f(2015)的值为32015+1.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.设i是虚数单位,2、2i、cosα+isinα(0<α<π)分别对应复平面内的点A、B、C,O为坐标原点,|$\overrightarrow{OA}$+$\overrightarrow{OC}$|=$\sqrt{7}$.
(1)求α的值;
(2)求向量$\overrightarrow{OA}$与$\overrightarrow{AC}$的夹角.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.已知函数f(x)=m-$\frac{1}{{5}^{x}+1}$
(1)若f(x)是R上的奇函数,求m的值
(2)用定义证明f(x)在R上单调递增
(3)若f(x)值域为D,且D⊆[-3,1],求m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.已知$\frac{tanα}{3-tanα}$=2,则$\frac{3sinα+2cosα}{sinα-cosα}$=8.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.设函数f(x)=x1nx+ax2(a∈R).
(1)若函数f(x)在(0,+∞)上为减函数,求实数a的最大值;
(2)设F(x)=f(x)-xlnx-[f′(x)-2ax],试讨论F(x)的零点的个数.

查看答案和解析>>

同步练习册答案