精英家教网 > 高中数学 > 题目详情
15.已知A(cosx,0),B(0,1-cosx),则$|{\overrightarrow{AB}}|$的最小值是(  )
A.$\frac{1}{2}$B.$\frac{{\sqrt{2}}}{2}$C.$\frac{{\sqrt{3}}}{2}$D.1

分析 利用数量积运算性质、二次函数的单调性即可得出.

解答 解:$\overrightarrow{AB}$=(-cosx,1-cosx),
则$|{\overrightarrow{AB}}|$=$\sqrt{co{s}^{2}x+(1-cosx)^{2}}$=$\sqrt{2(cosx-\frac{1}{2})^{2}+\frac{1}{2}}$$≥\frac{\sqrt{2}}{2}$,当cosx=$\frac{1}{2}$时取等号.
∴$|{\overrightarrow{AB}}|$的最小值是$\frac{\sqrt{2}}{2}$.
故选:B.

点评 本题考查了数量积运算性质、二次函数的单调性,考查了推理能力与计算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

5.下列命题中,正确的命题个数是6.
①ac2>bc2⇒a>b
②a≥b⇒ac2≥bc2
③$\frac{a}{c}$>$\frac{b}{c}$⇒ac>bc
④若a<b<0,则a2>ab>b2
⑤$\left\{\begin{array}{l}{a>b}\\{ac>bc}\end{array}\right.$⇒c>0;
⑥$\left\{\begin{array}{l}{a>b}\\{\frac{1}{a}>\frac{1}{b}}\end{array}\right.$⇒a>0,b<0.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.已知定义域为R的偶函数f(x)在区间[0,+∞)上是单调减函数,若f(1)<f(lnx),则x的取值范围是$(\frac{1}{e},e)$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.下列判断正确的是(  )
A.若p是真命题,则:“p且q”一定为真
B.若“p且q”是假命题,则:p一定为假
C.若“p且q”是真命题,则:p一定为真
D.若p是假命题,则:“p且q”不一定为假

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.下列四个式子中,计算结果可能为负数的是(  )
A.sin(arccosx)B.cos(arcsinx)C.sin(arctanx)D.cos(arctanx)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.已知$\overrightarrow a,\overrightarrow b$是(空间)非零向量,构造向量集合$P=\left\{{\left.{\overrightarrow p}\right|\overrightarrow p=t\overrightarrow a+\overrightarrow b,t∈{R}}\right\}$,记集合P中模最小的向量$\overrightarrow p$为$T(\overrightarrow a,\overrightarrow b)$.
(Ⅰ)对于$T(\overrightarrow a,\overrightarrow b)=t\overrightarrow a+\overrightarrow b$,求t的值(用$\overrightarrow a,\overrightarrow b$表示);
(Ⅱ)求证:$T(\overrightarrow a,\overrightarrow b)⊥\overrightarrow a$;
(Ⅲ)若$|\overrightarrow{a_1}|=|\overrightarrow{a_2}|=1$,且$<\overrightarrow{a_1},\overrightarrow{a_2}>=\frac{π}{3}$,构造向量序列${\overrightarrow a_n}=T(\overrightarrow{{a_{n-2}}},\overrightarrow{{a_{n-1}}})$,其中n∈N*,n≥3,请直接写出$|{\overrightarrow{a_n}}|$的值(用n表示,其中n≥3).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.已知定义在R上的偶函数f(x)满足f(1)=1,且对于任意的x>0,f′(x)<x恒成立,则不等式f(x)<$\frac{1}{2}$x2+$\frac{1}{2}$的解集为(  )
A.(-∞,1)B.(1,+∞)C.(-1,1)D.(-∞,-1)∪(1,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.求值:$\frac{{({1+tan{{22}°}})({1+tan{{23}°}})}}{2}$=1.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.设un=1+$\frac{1}{{2}^{2}}$+$\frac{1}{{3}^{2}}$+…+$\frac{1}{{n}^{2}}$,证明数列{un}的极限存在.

查看答案和解析>>

同步练习册答案