精英家教网 > 高中数学 > 题目详情
16.已知$\frac{tanα}{3-tanα}$=2,则$\frac{3sinα+2cosα}{sinα-cosα}$=8.

分析 由条件利用同角三角函数的基本关系求得tanα的值,可得$\frac{3sinα+2cosα}{sinα-cosα}$=$\frac{3tanα+2}{tanα-1}$ 的值.

解答 解:∵已知$\frac{tanα}{3-tanα}$=2,∴tanα=2,则$\frac{3sinα+2cosα}{sinα-cosα}$=$\frac{3tanα+2}{tanα-1}$=$\frac{6+2}{2-1}$=8,
故答案为:8.

点评 本题主要考查同角三角函数的基本关系的应用,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

6.已知定义域为R的偶函数f(x)在区间[0,+∞)上是单调减函数,若f(1)<f(lnx),则x的取值范围是$(\frac{1}{e},e)$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.已知定义在R上的偶函数f(x)满足f(1)=1,且对于任意的x>0,f′(x)<x恒成立,则不等式f(x)<$\frac{1}{2}$x2+$\frac{1}{2}$的解集为(  )
A.(-∞,1)B.(1,+∞)C.(-1,1)D.(-∞,-1)∪(1,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.求值:$\frac{{({1+tan{{22}°}})({1+tan{{23}°}})}}{2}$=1.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.某同学用“五点法”画函数f(x)=Asin(ωx+ϕ)+B,A>0,ω>0,|ϕ|<$\frac{π}{2}$在某一个周期内的图象时,列表并填入了部分数据,如下表:
ωx+φ0$\frac{π}{2}$π$\frac{3π}{2}$
xx1$\frac{1}{3}$x2$\frac{7}{3}$x3
Asin(ωx+ϕ)+B0$\sqrt{3}$0-$\sqrt{3}$0
(Ⅰ)请求出上表中的x1、x2、x3,并直接写出函数f(x)的解析式;
(Ⅱ)将f(x)的图象沿x轴向右平移$\frac{2}{3}$个单位得到函数g(x),当x∈[0,4]时其图象的最高点和最低点分别为P,Q,求$\overrightarrow{OQ}$与$\overrightarrow{QP}$夹角θ的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.函数y=$\sqrt{-{x}^{2}+x+2}$的单调递减区间是[$\frac{1}{2}$,2].

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.设定义域为R的函数f(x)=$\left\{\begin{array}{l}{lo{g}_{2}(x+2),x≥-1}\\{{x}^{2}+4x+4,x<-1}\end{array}\right.$.
(1)在平面直角坐标内作出函数f(x)的图象,并指出f(x)的单调区间(不需证明);
(2)若关于x的方程f(x)-2a=0有两个不相等的实数根,求a的取值范围(只需简单说明,不需严格证明);
(3)设g(x)为R上的奇函数,且当x>0时,g(x)=f(x),求g(x)的解析式.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.设un=1+$\frac{1}{{2}^{2}}$+$\frac{1}{{3}^{2}}$+…+$\frac{1}{{n}^{2}}$,证明数列{un}的极限存在.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.函数f(x)=ax+b,(a>0),g(x)=f(x)(x+m),f[f(x)]=16x+5.
(1)求f(x)解析式;
(2)当x∈[1,3]时,g(x)有最大值为13,求m的值.

查看答案和解析>>

同步练习册答案