| ¦Øx+¦Õ | 0 | $\frac{¦Ð}{2}$ | ¦Ð | $\frac{3¦Ð}{2}$ | 2¦Ð |
| x | x1 | $\frac{1}{3}$ | x2 | $\frac{7}{3}$ | x3 |
| Asin£¨¦Øx+ϕ£©+B | 0 | $\sqrt{3}$ | 0 | -$\sqrt{3}$ | 0 |
·ÖÎö £¨1£©$ÓÉ\left\{{\begin{array}{l}{\frac{1}{3}¦Ø+ϕ=\frac{¦Ð}{2}}\\{\frac{7}{3}¦Ø+ϕ=\frac{3¦Ð}{2}}\end{array}}\right.£¬µÃ\left\{{\begin{array}{l}{¦Ø=\frac{¦Ð}{2}}\\{ϕ=\frac{¦Ð}{3}}\end{array}}\right.$£¬ÓÉ$\left\{{\begin{array}{l}{\frac{¦Ð}{2}{x_1}+\frac{¦Ð}{3}=0}\\{\frac{¦Ð}{2}{x_2}+\frac{¦Ð}{3}=¦Ð}\\{\frac{¦Ð}{2}{x_3}+\frac{¦Ð}{3}=2¦Ð}\end{array}}\right.$£¬½âµÃx1¡¢x2¡¢x3µÄÖµ£¬ÔÙÇóµÃA£¬B¼´¿ÉµÃ½âº¯Êýf£¨x£©µÄ½âÎöʽ£®
£¨2£©¸ù¾ÝÈý½Çº¯ÊýͼÏó±ä»»¹æÂɿɵãº$g£¨x£©=\sqrt{3}sin\frac{¦Ð}{2}x$£¬ÇóµÃͼÏóµÄ×î¸ßµãºÍ×îµÍµãP£¬QµÄ×ø±ê£¬¿ÉµÃÏòÁ¿$\overrightarrow{OQ}$Óë$\overrightarrow{QP}$×ø±ê£¬ÓÉÆ½ÃæÏòÁ¿µÄÊýÁ¿»ýÔËËã¼´¿ÉÇóµÃ¼Ð½Ç¦ÈµÄ´óС£®
½â´ð ½â£º£¨1£©$ÓÉ\left\{{\begin{array}{l}{\frac{1}{3}¦Ø+ϕ=\frac{¦Ð}{2}}\\{\frac{7}{3}¦Ø+ϕ=\frac{3¦Ð}{2}}\end{array}}\right.£¬µÃ\left\{{\begin{array}{l}{¦Ø=\frac{¦Ð}{2}}\\{ϕ=\frac{¦Ð}{3}}\end{array}}\right.$£¨2¡ä£©
¡à$\left\{{\begin{array}{l}{\frac{¦Ð}{2}{x_1}+\frac{¦Ð}{3}=0}\\{\frac{¦Ð}{2}{x_2}+\frac{¦Ð}{3}=¦Ð}\\{\frac{¦Ð}{2}{x_3}+\frac{¦Ð}{3}=2¦Ð}\end{array}}\right.$£¬
¡à${x_1}=-\frac{2}{3}$£¬${x_2}=\frac{4}{3}$£¬${x_3}=\frac{10}{3}$£¨5¡ä£©
ÓÖ¡ß$A=\sqrt{3}£¬B=0$£¬$f£¨x£©=\sqrt{3}sin£¨\frac{¦Ð}{2}x+\frac{¦Ð}{3}£©$£»£¨6¡ä£©
£¨2£©½«f£¨x£©µÄͼÏóÏòÓÒÆ½ÒÆ$\frac{2}{3}$¸öµ¥Î»ºóµÃµ½$g£¨x£©=\sqrt{3}sin\frac{¦Ð}{2}x$£¨8¡ä£©
¹Ê×î¸ßµãΪ$P£¨{1£¬\sqrt{3}}£©$£¬×îµÍµãΪ$Q£¨{3£¬-\sqrt{3}}£©$£®
Ôò$\overrightarrow{OQ}=£¨{3£¬-\sqrt{3}}£©$£¬$\overrightarrow{QP}=£¨{-2£¬2\sqrt{3}}£©$£¬Ôò$cos¦È=\frac{{\overrightarrow{OQ}•\overrightarrow{QP}}}{{|{\overrightarrow{OQ}}|•|{\overrightarrow{QP}}|}}=-\frac{{\sqrt{3}}}{2}$£¨10¡ä£©
¹Ê$¦È=\frac{5¦Ð}{6}$£®£¨12¡ä£©
µãÆÀ ±¾ÌâÖ÷Òª¿¼²éÁËÎåµã·¨×÷ÕýÏÒº¯ÊýµÄͼÏó£¬Èý½Çº¯ÊýµÄͼÏó±ä»»¹æÂÉ£¬¿¼²éÁËÆ½ÃæÏòÁ¿¼°ÆäÓ¦Óã¬ÊìÁ·ÕÆÎÕºÍÁé»îÓ¦ÓÃÏà¹Ø¹«Ê½¼°¶¨ÀíÊǽâÌâµÄ¹Ø¼ü£¬ÊôÓÚÖеµÌ⣮
| Äê¼¶ | ¸ßÖÐ¿Î³Ì | Äê¼¶ | ³õÖÐ¿Î³Ì |
| ¸ßÒ» | ¸ßÒ»Ãâ·Ñ¿Î³ÌÍÆ¼ö£¡ | ³õÒ» | ³õÒ»Ãâ·Ñ¿Î³ÌÍÆ¼ö£¡ |
| ¸ß¶þ | ¸ß¶þÃâ·Ñ¿Î³ÌÍÆ¼ö£¡ | ³õ¶þ | ³õ¶þÃâ·Ñ¿Î³ÌÍÆ¼ö£¡ |
| ¸ßÈý | ¸ßÈýÃâ·Ñ¿Î³ÌÍÆ¼ö£¡ | ³õÈý | ³õÈýÃâ·Ñ¿Î³ÌÍÆ¼ö£¡ |
¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ
| A£® | $\frac{1}{{2\sqrt{x}}}$ | B£® | $\frac{1}{{\sqrt{x}}}$ | C£® | $\frac{2}{x}$ | D£® | $\frac{1}{2x}$ |
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ
| A£® | ÒÑÖªF1£¨-4£¬0£©£¬F2£¨4£¬0£©£¬µ½Á½µãF1£¬F2µÄ¾àÀëÖ®ºÍ´óÓÚ8µÄµãµÄ¹ì¼£ÊÇÍÖÔ² | |
| B£® | ÒÑÖªF1£¨-4£¬0£©£¬F2£¨4£¬0£©£¬µ½Á½µãF1£¬F2µÄ¾àÀëÖ®ºÍµÈÓÚ6µÄµãµÄ¹ì¼£ÊÇÍÖÔ² | |
| C£® | µ½µãF1£¨-4£¬0£©£¬F2£¨4£¬0£©µÄ¾àÀëÖ®ºÍµÈÓڴӵ㣨5£¬3£©µ½F1£¬F2µÄ¾àÀëÖ®ºÍµÄµãµÄ¹ì¼£ÊÇÍÖÔ² | |
| D£® | µ½µãF1£¨-4£¬0£©£¬F2£¨4.0£©¾àÀëÏàµÈµÄµãµÄ¹ì¼£ÊÇÍÖÔ² |
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ
²é¿´´ð°¸ºÍ½âÎö>>
¹ú¼ÊѧУÓÅÑ¡ - Á·Ï°²áÁбí - ÊÔÌâÁбí
ºþ±±Ê¡»¥ÁªÍøÎ¥·¨ºÍ²»Á¼ÐÅÏ¢¾Ù±¨Æ½Ì¨ | ÍøÉÏÓк¦ÐÅÏ¢¾Ù±¨×¨Çø | µçÐÅթƾٱ¨×¨Çø | ÉæÀúÊ·ÐéÎÞÖ÷ÒåÓк¦ÐÅÏ¢¾Ù±¨×¨Çø | ÉæÆóÇÖȨ¾Ù±¨×¨Çø
Î¥·¨ºÍ²»Á¼ÐÅÏ¢¾Ù±¨µç»°£º027-86699610 ¾Ù±¨ÓÊÏ䣺58377363@163.com