11£®Ä³Í¬Ñ§Óá°Îåµã·¨¡±»­º¯Êýf£¨x£©=Asin£¨¦Øx+ϕ£©+B£¬A£¾0£¬¦Ø£¾0£¬|ϕ|£¼$\frac{¦Ð}{2}$ÔÚijһ¸öÖÜÆÚÄÚµÄͼÏóʱ£¬ÁÐ±í²¢ÌîÈëÁ˲¿·ÖÊý¾Ý£¬ÈçÏÂ±í£º
¦Øx+¦Õ0$\frac{¦Ð}{2}$¦Ð$\frac{3¦Ð}{2}$2¦Ð
xx1$\frac{1}{3}$x2$\frac{7}{3}$x3
Asin£¨¦Øx+ϕ£©+B0$\sqrt{3}$0-$\sqrt{3}$0
£¨¢ñ£©ÇëÇó³öÉϱíÖеÄx1¡¢x2¡¢x3£¬²¢Ö±½Óд³öº¯Êýf£¨x£©µÄ½âÎöʽ£»
£¨¢ò£©½«f£¨x£©µÄͼÏóÑØxÖáÏòÓÒÆ½ÒÆ$\frac{2}{3}$¸öµ¥Î»µÃµ½º¯Êýg£¨x£©£¬µ±x¡Ê[0£¬4]ʱÆäͼÏóµÄ×î¸ßµãºÍ×îµÍµã·Ö±ðΪP£¬Q£¬Çó$\overrightarrow{OQ}$Óë$\overrightarrow{QP}$¼Ð½Ç¦ÈµÄ´óС£®

·ÖÎö £¨1£©$ÓÉ\left\{{\begin{array}{l}{\frac{1}{3}¦Ø+ϕ=\frac{¦Ð}{2}}\\{\frac{7}{3}¦Ø+ϕ=\frac{3¦Ð}{2}}\end{array}}\right.£¬µÃ\left\{{\begin{array}{l}{¦Ø=\frac{¦Ð}{2}}\\{ϕ=\frac{¦Ð}{3}}\end{array}}\right.$£¬ÓÉ$\left\{{\begin{array}{l}{\frac{¦Ð}{2}{x_1}+\frac{¦Ð}{3}=0}\\{\frac{¦Ð}{2}{x_2}+\frac{¦Ð}{3}=¦Ð}\\{\frac{¦Ð}{2}{x_3}+\frac{¦Ð}{3}=2¦Ð}\end{array}}\right.$£¬½âµÃx1¡¢x2¡¢x3µÄÖµ£¬ÔÙÇóµÃA£¬B¼´¿ÉµÃ½âº¯Êýf£¨x£©µÄ½âÎöʽ£®
£¨2£©¸ù¾ÝÈý½Çº¯ÊýͼÏó±ä»»¹æÂɿɵãº$g£¨x£©=\sqrt{3}sin\frac{¦Ð}{2}x$£¬ÇóµÃͼÏóµÄ×î¸ßµãºÍ×îµÍµãP£¬QµÄ×ø±ê£¬¿ÉµÃÏòÁ¿$\overrightarrow{OQ}$Óë$\overrightarrow{QP}$×ø±ê£¬ÓÉÆ½ÃæÏòÁ¿µÄÊýÁ¿»ýÔËËã¼´¿ÉÇóµÃ¼Ð½Ç¦ÈµÄ´óС£®

½â´ð ½â£º£¨1£©$ÓÉ\left\{{\begin{array}{l}{\frac{1}{3}¦Ø+ϕ=\frac{¦Ð}{2}}\\{\frac{7}{3}¦Ø+ϕ=\frac{3¦Ð}{2}}\end{array}}\right.£¬µÃ\left\{{\begin{array}{l}{¦Ø=\frac{¦Ð}{2}}\\{ϕ=\frac{¦Ð}{3}}\end{array}}\right.$£¨2¡ä£©
¡à$\left\{{\begin{array}{l}{\frac{¦Ð}{2}{x_1}+\frac{¦Ð}{3}=0}\\{\frac{¦Ð}{2}{x_2}+\frac{¦Ð}{3}=¦Ð}\\{\frac{¦Ð}{2}{x_3}+\frac{¦Ð}{3}=2¦Ð}\end{array}}\right.$£¬
¡à${x_1}=-\frac{2}{3}$£¬${x_2}=\frac{4}{3}$£¬${x_3}=\frac{10}{3}$£¨5¡ä£©
ÓÖ¡ß$A=\sqrt{3}£¬B=0$£¬$f£¨x£©=\sqrt{3}sin£¨\frac{¦Ð}{2}x+\frac{¦Ð}{3}£©$£»£¨6¡ä£©
£¨2£©½«f£¨x£©µÄͼÏóÏòÓÒÆ½ÒÆ$\frac{2}{3}$¸öµ¥Î»ºóµÃµ½$g£¨x£©=\sqrt{3}sin\frac{¦Ð}{2}x$£¨8¡ä£©
¹Ê×î¸ßµãΪ$P£¨{1£¬\sqrt{3}}£©$£¬×îµÍµãΪ$Q£¨{3£¬-\sqrt{3}}£©$£®
Ôò$\overrightarrow{OQ}=£¨{3£¬-\sqrt{3}}£©$£¬$\overrightarrow{QP}=£¨{-2£¬2\sqrt{3}}£©$£¬Ôò$cos¦È=\frac{{\overrightarrow{OQ}•\overrightarrow{QP}}}{{|{\overrightarrow{OQ}}|•|{\overrightarrow{QP}}|}}=-\frac{{\sqrt{3}}}{2}$£¨10¡ä£©
¹Ê$¦È=\frac{5¦Ð}{6}$£®£¨12¡ä£©

µãÆÀ ±¾ÌâÖ÷Òª¿¼²éÁËÎåµã·¨×÷ÕýÏÒº¯ÊýµÄͼÏó£¬Èý½Çº¯ÊýµÄͼÏó±ä»»¹æÂÉ£¬¿¼²éÁËÆ½ÃæÏòÁ¿¼°ÆäÓ¦Óã¬ÊìÁ·ÕÆÎÕºÍÁé»îÓ¦ÓÃÏà¹Ø¹«Ê½¼°¶¨ÀíÊǽâÌâµÄ¹Ø¼ü£¬ÊôÓÚÖеµÌ⣮

Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

1£®É躯Êýf£¨x£©=2$\sqrt{x}$£¬Ôòf¡ä£¨x£©µÈÓÚ£¨¡¡¡¡£©
A£®$\frac{1}{{2\sqrt{x}}}$B£®$\frac{1}{{\sqrt{x}}}$C£®$\frac{2}{x}$D£®$\frac{1}{2x}$

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

2£®ÒÑÖªº¯Êýf£¨x£©ÎªRÉϵÄÔöº¯Êý£¬ÇÒ¶ÔÓÚÈÎÒâʵÊýx£¬¶¼ÓÐf[f£¨x£©-3x]=4£¬Ôòf£¨2015£©µÄֵΪ32015+1£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

19£®ÒÑÖªº¯Êýf£¨x£©=m-$\frac{1}{{5}^{x}+1}$
£¨1£©Èôf£¨x£©ÊÇRÉÏµÄÆæº¯Êý£¬ÇómµÄÖµ
£¨2£©Óö¨ÒåÖ¤Ã÷f£¨x£©ÔÚRÉϵ¥µ÷µÝÔö
£¨3£©Èôf£¨x£©ÖµÓòΪD£¬ÇÒD⊆[-3£¬1]£¬ÇómµÄȡֵ·¶Î§£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

6£®ÒÑÖª$\overrightarrow a=£¨{5\sqrt{3}cosx£¬cosx}£©$£¬$\overrightarrow b=£¨{sinx£¬2cosx}£©$£¬¼Çº¯Êýf£¨x£©=$\overrightarrow a•\overrightarrow b+{\overrightarrow{|b|}^2}$
£¨¢ñ£©Çóº¯Êýf£¨x£©µÄ×îСÕýÖÜÆÚ¼°f£¨x£©µÄ¶Ô³ÆÖÐÐÄ£»
£¨¢ò£©Çóf£¨x£©ÔÚ[0£¬¦Ð]Éϵĵ¥µ÷µÝÔöÇø¼ä£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

16£®ÒÑÖª$\frac{tan¦Á}{3-tan¦Á}$=2£¬Ôò$\frac{3sin¦Á+2cos¦Á}{sin¦Á-cos¦Á}$=8£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

3£®ÒÑÖª¼¯ºÏM={x|x2-4x+3£¼0}£¬N={x||x-3|¡Ü1}£®
£¨1£©Çó³ö¼¯ºÏM£¬N£»
£¨2£©ÊÔ¶¨ÒåÒ»ÖÖм¯ºÏÔËËã¡÷£¬Ê¹M¡÷N={x|1£¼x£¼2}£»
£¨3£©ÈôÓÐP={x||$\frac{x-3.5}{x-2.5}$|¡Ý$\frac{x-3.5}{x-2.5}$}£¬°´£¨2£©µÄÔËË㣬Çó³ö£¨N¡÷M£©¡÷P£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

20£®ÏÂÁÐ˵·¨ÕýÈ·µÄÊÇ £¨¡¡¡¡£©
A£®ÒÑÖªF1£¨-4£¬0£©£¬F2£¨4£¬0£©£¬µ½Á½µãF1£¬F2µÄ¾àÀëÖ®ºÍ´óÓÚ8µÄµãµÄ¹ì¼£ÊÇÍÖÔ²
B£®ÒÑÖªF1£¨-4£¬0£©£¬F2£¨4£¬0£©£¬µ½Á½µãF1£¬F2µÄ¾àÀëÖ®ºÍµÈÓÚ6µÄµãµÄ¹ì¼£ÊÇÍÖÔ²
C£®µ½µãF1£¨-4£¬0£©£¬F2£¨4£¬0£©µÄ¾àÀëÖ®ºÍµÈÓڴӵ㣨5£¬3£©µ½F1£¬F2µÄ¾àÀëÖ®ºÍµÄµãµÄ¹ì¼£ÊÇÍÖÔ²
D£®µ½µãF1£¨-4£¬0£©£¬F2£¨4.0£©¾àÀëÏàµÈµÄµãµÄ¹ì¼£ÊÇÍÖÔ²

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

1£®ÒÑÖªf£¨x£©=$\left\{\begin{array}{l}{x+2£¨x¡Ü-1£©}\\{2x£¨-1£¼x£¼2£©}\\{\frac{{x}^{2}}{2}£¨x¡Ý2£©}\end{array}\right.$£®
£¨1£©Çóf£¨-2£©£¬f£¨f£¨-$\frac{3}{2}$£©£©µÄÖµ£»
£¨2£©Èôf£¨a£©=3£¬ÇóaµÄÖµ£®

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸