精英家教网 > 高中数学 > 题目详情
在△ABC中,点B(0,1),直线AD:2x﹣y﹣4=0是角A的平分线.直线CE:x﹣2y﹣6=0是AB边的中线.
(1)求边AC的直线方程;
(2)圆M:x2+(y+1)2=r2(1≤r≤3),自点C向圆M引切线CF,CG,切点为F、G.求:的取值范围.
解:(1)设AB中点坐标为(x0,y0),
∵点B(0,1),则A点坐标为(2x0,2y0﹣1).
依题意得
解之得:
∴A(﹣2,﹣8),
由于B点关于2x﹣y﹣4=0的对称点(4,﹣1)在直线AC上.
∴直线AC的方程为 ,即 7x﹣6y﹣34=0.
(2)由   解得
即C(4,﹣1),
又 圆心M(0,﹣1),
==(16﹣r2)cos2∠CFM=(16﹣r2)(1﹣2sin2∠GCM)=
∵1≤r≤3,∴1≤r2≤9,
由单调性得 =
=
的取值范围为
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

在△ABC中,点B(0,1),直线AD:2x-y-4=0是角A的平分线.直线CE:x-2y-6=0是AB边的中线.
(1)求边AC的直线方程;
(2)圆M:x2+(y+1)2=r2(1≤r≤3),自点C向圆M引切线CF,CG,切点为F、G.求:
CF
CG
的取值范围.

查看答案和解析>>

科目:高中数学 来源:设计选修数学-1-1苏教版 苏教版 题型:044

在△ABC中,点B(-6,0)、C(0,8),且sinB,sinA,sinC成等差数列.

(1)求证:顶点A在一个椭圆上运动.

(2)指出这个椭圆的焦点坐标以及焦距.

查看答案和解析>>

科目:高中数学 来源:选修设计数学1-1北师大版 北师大版 题型:044

在△ABC中,点B(-6,0)、C(0,8),且sinB、sinA、sinC成等差数列.

(1)求证:顶点A在一个椭圆上运动.

(2)指出这个椭圆的焦点坐标以及焦距.

查看答案和解析>>

科目:高中数学 来源:2010-2011学年江苏省南京27中高三(上)学情分析数学试卷(08)(解析版) 题型:解答题

在△ABC中,点B(0,1),直线AD:2x-y-4=0是角A的平分线.直线CE:x-2y-6=0是AB边的中线.
(1)求边AC的直线方程;
(2)圆M:x2+(y+1)2=r2(1≤r≤3),自点C向圆M引切线CF,CG,切点为F、G.求:的取值范围.

查看答案和解析>>

同步练习册答案