精英家教网 > 高中数学 > 题目详情
在平行六面体ABCD-A1B1C1D1中,用向量
AB
AD
AA1
来表示向量
AC1
(  )
A.
AC1
=
AB
-
AD
+
AA1
B.
AC1
=
AB
+
AD
+
AA1
C.
AC1
=
AB
+
AD
-
AA1
D.
AC1
=
AB
-
AD
-
AA1

AD
=
BC
AA1
=
CC1
,∴
AC1
=
AB
+
BC
+
CC1
=
AB
+
AD
+
AA1

故选B.
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:单选题

在∠AOBOA边上取m个点,在OB边上取n个点(均除O点外),连同O点共m+n+1个点,现任取其中三个点为顶点作三角形,可作的三角形有(    )

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本小题满分13分)已知△ABC的周长为6,成等比数列,求
(1)△ABC的面积S的最大值;
(2)的取值范围。

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

如图,四面体O-ABC中,
OA
=
a
OB
=
b
OC
=
c
D为BC的中点,E为AD的中点,则向量
OE
用向量
a
b
c
表示为(  )
A.
OE
=
1
2
a
+
1
2
b
+
1
2
c
B.
OE
=
1
2
a
+
1
4
b
+
1
4
c
C.
OE
=
1
4
a
+
1
4
b
+
1
4
c
D.
OE
=
a
+
1
4
b
+
1
4
c

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图所示,设A为△ABC所在平面外一点,HD=2CH,G为BH的中点
(1)试用
AB
AC
AD
表示
AG

(2)若∠BAC=60°,∠CAD=∠DAB=45°,|
AB
|=|
AC
|=2,|
AD
|=3,求|
AG
|

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

在边长为1的正方形ABCD中,E为AB的中点,P为以A为圆心,AB为半径的圆在正方形内的圆弧上的任意一点,设向量
AC
DE
AP

(Ⅰ)求点(μ,λ)的轨迹方程(不需限制变量取值范围);
(Ⅱ)求λ+μ的最小值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

已知向量
a
=(1,n),
b
=(-1,n),2
a
-
b
b
垂直,|
a
|=______.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图:空间四边形中,点分别是的中点.设
(1)用表示向量.
(2)若,且夹角的余弦值均为夹角为600,求

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

若椭圆交于A、B两点,过原点与线段AB中点连线的斜率为,则的值等于(     )  
A.          B.        C.       D.

查看答案和解析>>

同步练习册答案