精英家教网 > 高中数学 > 题目详情

如图,在四棱锥P-ABCD中,四边形ABCD是正方形,PA⊥平面ABCD,E是PA上的一点,F是BC的中点.
(Ⅰ)求证:EC⊥BD;
(Ⅱ)若PE=EA,求证:EF∥平面PCD.

证明:(1)连接AC,∵四边形ABCD是正方形,∴AC⊥BD,
∵PA⊥平面ABCD,AC?平面ABCD,∴PA⊥BD,
又AC∩PA=A,∴BD⊥平面PAC,
∵EC?平面PAC,
∴EC⊥BD.
(2)取PD中点M,连接EM,CM,则ME∥AD,ME=AD,
∵ABCD是正方形,∴AD∥BC,AD=BC,
∵F为BC的中点,∴CF∥AD,CF=AD,
∴ME∥CF,ME=CF,∴四边形EFCM是平行四边形,
∴EF∥CM,又∵EF?平面PCD,CM?平面PCD,
∴EF∥平面PCD.
分析:(1)连接AC,转化为证明直线BD⊥平面PAC;
(2)取PD中点M,连接EM,CM,根据线面平行的判定定理,只需证明EF∥CM.
点评:本题考查线面平行的判定定理及线面垂直的性质,理解相关定理的内容是解决该类题目的基础.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

精英家教网如图,在四棱锥P-ABCD中,底面ABCD是矩形.已知AB=3,AD=2,PA=2,PD=2
2
,∠PAB=60°.
(1)证明AD⊥PB;
(2)求二面角P-BD-A的正切值大小.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,在四棱锥P-ABCD中,PA⊥平面ABCD,四边形ABCD为正方形,AB=4,PA=3,点A在PD上的射影为点G,点E在AB上,平面PEC⊥平面PDC.
(1)求证:AG∥平面PEC;
(2)求AE的长;
(3)求二面角E-PC-A的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,在四棱锥P-ABCD中,PA⊥底面ABCD,∠BCD=120°,BC⊥AB,CD⊥AD,BC=CD=PA=a,
(Ⅰ)求证:平面PBD⊥平面PAC.
(Ⅱ)求四棱锥P-ABCD的体积V.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,在四棱锥P-ABCD中,底面是边长为a的菱形,∠ABC=60°PD⊥面ABCD,PC=a,E为PB中点
(1)求证;平面ACE⊥面ABCD;
(2)求三棱锥P-EDC的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2008•武汉模拟)如图,在四棱锥P-ABCD中,底面ABCD是直角梯形,BC∥AD,且∠BAD=90°,又PA⊥底面ABCD,BC=AB=PA=1,AD=2.
(1)求二面角P-CD-A的平面角正切值,
(2)求A到面PCD的距离.

查看答案和解析>>

同步练习册答案