精英家教网 > 高中数学 > 题目详情
数列{an}的前n项的和Sn=2n2-n+1,求an
考点:数列的求和
专题:等差数列与等比数列
分析:由已知条件利用公式an=
S1,n=1
Sn-Sn-1,n≥2
求解.
解答: 解:∵数列{an}的前n项的和Sn=2n2-n+1,
∴n=1时,a1=S1=2-1+1=2,
当n≥2时,an=Sn-Sn-1
=(2n2-n+1)-[2(n-1)2-(n-1)+1]
=4n-3,
n=1时,4n-3=1≠a1
∴an=
2,n=1
4n-3,n≥2
点评:本题考查数列的通项公式的求法,是基础题,解题时要认真审题,注意公式an=
S1,n=1
Sn-Sn-1,n≥2
的合理运用.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知角α的终边上一点P(3,m),且cosα=
3
5
,则m=(  )
A、4B、-4C、±4D、±5

查看答案和解析>>

科目:高中数学 来源: 题型:

已知数列{an}的前n项之和Sn=n2+n.
(1)求数列的通项公式an
(2)设bn=
2
(n+1)an
,Tn=b1+b2+…+bn,求T2013

查看答案和解析>>

科目:高中数学 来源: 题型:

已知单调递增的等比数列{an}满足:a2+a3+a4=28,且a3+2是a2,a4的等差中项.
(1)求数列{an}的通项公式;
(2)若bn=anlog
1
2
an,Sn=b1+b2+…+bn,求使Sn+n•2n+1>50成立的正整数n的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=
2
x
-xm,且f(4)=-
7
2

(1)求m的值;判断f(x)在(0,+∞)上的单调性,并给予证明.
(2)已知f(t2+t+1)<f(3),求t的范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

若双曲线C的离心率为2,其中一个焦点F(2,0)
(1)求双曲线C的标准方程;
(2)若直线l斜率为2且过点F,求直线l被双曲线C截得的弦长.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知数列{an}的前n项和为Sn,点(n,
Sn
n
)在直线y=x+4上.数列{bn}满足bn+2-2bn+1+bn=0(n∈N*),且b4=8,前11项和为154.
(1)求数列{an}、{bn}的通项公式;
(2)若数列dn=2n an,求数列{dn}的前n项和Tn
(3)设cn=
3
2(an-2)(2bn+5)
,数列{cn}的前n项和为Tn,求使不等式Tn
k
75
对一切n∈N*都成立的最大正整数k的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知
a
=3
i
-4
j
a
+
b
=4
i
-3
j
i
j
为相互垂直的单位向量.
(1)求向量
a
b
的夹角;
(2)对非零向量
p
q
,如果存在不为零的常数α,β使α
p
q
=
0
,那么称向量
p
q
是线性相关的,否则称向量
p
q
是线性无关的.向量
a
b
是线性相关还是线性无关?为什么?

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,四面体ABCD中,O、E分别是BD、BC的中点,AB=AD=
2
,CA=CB=CD=BD=2,
(1)求证:BD⊥AC;
(2)求三棱锥E-ADC的体积.

查看答案和解析>>

同步练习册答案