精英家教网 > 高中数学 > 题目详情

函数f(x)=x2-bx+a的图象如图所示,则函数g(x)=lnx+f′(x)的零点所在的区间是


  1. A.
    数学公式数学公式
  2. B.
    数学公式,1)
  3. C.
    (1,2)
  4. D.
    (2,3)
B
分析:由二次函数图象的对称轴确定b的范围,据g(x)的表达式计算g( )和g(1)的值的符号,从而确定零点所在的区间.
解答:∵二次函数f(x)图象的对称轴 x=∈( ,1),
∴1<b<2,g(x)=lnx+2x-b在定义域内单调递增,
g( )=ln +1-b<0,
g(1)=ln1+2-b=2-b>0,
∴函数g(x)=lnx+f′(x)的零点所在的区间是( ,1);
故选B.
点评:此题是个中档题.题考查导数的运算、函数零点的判断以及识图能力,体现了数形结合的思想,考查了学生应用知识分析解决问题的能力.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知函数f(x)=x2-ax+4+2lnx
(I)当a=5时,求f(x)的单调递减函数;
(Ⅱ)设直线l是曲线y=f(x)的切线,若l的斜率存在最小值-2,求a的值,并求取得最小斜率时切线l的方程;
(Ⅲ)若f(x)分别在x1、x2(x1≠x2)处取得极值,求证:f(x1)+f(x2)<2.

查看答案和解析>>

科目:高中数学 来源: 题型:

函数f(x)=x2+2x在[m,n]上的值域是[-1,3],则m+n所成的集合是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

已知二次函数f(x)=x2-2x-3的图象为曲线C,点P(0,-3).
(1)求过点P且与曲线C相切的直线的斜率;
(2)求函数g(x)=f(x2)的单调递增区间.

查看答案和解析>>

科目:高中数学 来源: 题型:

函数f(x)=-x2+2x,x∈(0,3]的值域为
[-3,1]
[-3,1]

查看答案和解析>>

科目:高中数学 来源: 题型:

设函数f(x)=x2+
12
x
+lnx的导函数为f′(x),则f′(2)=
5
5

查看答案和解析>>

同步练习册答案