解:(1)一定存在直线l使函数

的图象与函数g(x)=lg(-x)+2的图象关于直线l对称,这是个错误命题,由于y=lgx与y=lg(-x)关于Y轴对称,但函数

的图象与函数g(x)=lg(-x)+2的图象向上平移的幅度不一样,故它们不关于y轴对称,由其图形结构知找不到这样的直线满足题意;
(2)不等式:arcsinx≤arccosx的解集为

是一个错误命题,因为自变量在

时,arcsinx∈[

,

],而arccosx∈[0,

]故错误;
(3)已知数列{a
n}的前n项和为S
n=1-(-1)
n,n∈N
*,则数列{a
n}一定是等比数列;,此命题正确,由于a
n=S
n-S
n-1=2×(-1)
n-1,当n=1时也成立,即数列的通项公式是2×(-1)
n-1,是一个等比数列.
(4)过抛物线y
2=2px(p>0)上的任意一点M(x
°,y
°)的切线方程一定可以表示为y
0y=p(x+x
0)是正确命题,由于直线y
0y=p(x+x
0)过点M(x
°,y
°),且与抛物线y
2=2px(p>0)有且只有一个交点,所以此命题正确
综上(3)(4)是正确命题,
故答案为(3)(4)
分析:(1)一定存在直线l使函数

的图象与函数g(x)=lg(-x)+2的图象关于直线l对称,可由对数函数的图象变换进行判断
(2)不等式:arcsinx≤arccosx的解集为

,利用反三角函数的定义直接求解出符合条件的范围,解出解集;
(3)已知数列{a
n}的前n项和为S
n=1-(-1)
n,n∈N
*,则数列{a
n}一定是等比数列,可求出其通项公式对它的性质进行研究判断其正误;
(4)过抛物线y
2=2px(p>0)上的任意一点M(x
°,y
°)的切线方程一定可以表示为y
0y=p(x+x
0),可通过解出其切数方程对比得出正误.
点评:本题考查命题的真真假判断,此类题一般涉及到的知识点较多,属于基础概念与基本方法考查题,解题的关键是理解每个命题所涉及的知识与方法,由此作出正确判断,此类题主要考查知识的记忆能力及利用知识判断推理的能力