精英家教网 > 高中数学 > 题目详情
20.在四棱锥C-ABDE中,F为CD的中点,DB⊥平面ABC,AE∥BD,AB=BC=CA=BD=2AE.
(1)求证:EF⊥平面BCD;
(2)求面CED与面ABC所成的二面角(锐角)的大小.

分析 (1)设AE=1,以AB为y轴,AE为z轴,建立空间直角坐标系,利用向量法能证明EF⊥平面BCD.
(2)求出平面CED的法向量和平面ABC的法向量,由此利用向量法能求出面CED与面ABC所成的二面角(锐角)的大小.

解答 (1)证明:设AE=1,以AB为y轴,AE为z轴,建立空间直角坐标系,
由已知得A(0,0,0),B(0,2,0),C($\sqrt{3}$,1,0),D(0,2,2),
E(0,0,1),F($\frac{\sqrt{3}}{2},\frac{3}{2}$,1),
$\overrightarrow{EF}$=($\frac{\sqrt{3}}{2},\frac{3}{2},0$),$\overrightarrow{CD}$=(-$\sqrt{3}$,1,2),$\overrightarrow{BD}$=(0,0,2),
∴$\overrightarrow{EF}•\overrightarrow{CD}$=0,$\overrightarrow{EF}•\overrightarrow{BD}$=0,
∴EF⊥CD,EF⊥BD,
∵CD?平面BCD,BD?平面BCD,CD∩BD=D,
∴EF⊥平面BCD.
(2)设平面CED的法向量$\overrightarrow{n}$=(x,y,z),
则$\left\{\begin{array}{l}{\overrightarrow{n}•\overrightarrow{EF}=\frac{\sqrt{3}}{2}x+\frac{3}{2}y=0}\\{\overrightarrow{n}•\overrightarrow{CD}=-\sqrt{3}x+y+2z=0}\end{array}\right.$,取x=1,得$\overrightarrow{n}$=(1,$\frac{\sqrt{3}}{3}$,$\frac{2\sqrt{3}}{3}$),
又平面ABC的法向量$\overrightarrow{m}$=(0,0,1),
设平面CED与面ABC所成的二面角(锐角)的平面角为θ,
则cosθ=|cos<$\overrightarrow{m},\overrightarrow{n}$>|=|$\frac{\overrightarrow{m}•\overrightarrow{n}}{|\overrightarrow{m}|•|\overrightarrow{n}|}$|=$\frac{\frac{2\sqrt{3}}{3}}{\sqrt{1+\frac{1}{3}+\frac{4}{3}}}$=$\frac{\sqrt{2}}{2}$,
∴$θ=\frac{π}{4}$,
∴面CED与面ABC所成的二面角(锐角)的大小为$\frac{π}{4}$.

点评 本题考查线面垂直的证明,考查二面角的大小的求法,是中档题,解题时要注意向量法的合理运用.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

10.已知抛物线x2=2py(p>0)的焦点与双曲线x2-y2=-$\frac{1}{2}$的一个焦点重合,且在抛物线上有一动点P到x轴的距离为m,P到直线l:2x-y-4=0的距离为n,则m+n的最小值为(  )
A.$\sqrt{5}$+1B.$\sqrt{5}$-1C.$\sqrt{5}$D.2$\sqrt{5}$-2

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.设a>b>0,求证:$\frac{{(a-b)}^{2}}{8a}$<$\frac{a+b}{2}$-$\sqrt{ab}$<$\frac{(a-b)^{2}}{8b}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.如图,△ABC为等腰直角三角形,∠ACB=90°,PA⊥面ABC,AC=a,PA=$\sqrt{2}$a.
(1)求证:PC⊥BC;
(2)求二面角A-PB-C的余弦值的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.已知m、n∈N*,求证:$\sqrt{mn(m+2)(n+2)}$-$\sqrt{mn(mn+2)}$≥3-$\sqrt{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.若cos(α+$\frac{5π}{12}$)=-$\frac{4}{5}$,0<α<$\frac{π}{2}$,则cos(α+$\frac{π}{6}$)=-$\frac{\sqrt{2}}{10}$,或-$\frac{7\sqrt{2}}{10}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.已知a=log3$\frac{1}{4}$,b=3${\;}^{-\frac{1}{3}}$,c=log${\;}_{\frac{1}{2}}$2,则(  )
A.a<b<cB.b<c<aC.a<c<bD.c<a<b

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.计算:
(1)$\frac{1-{a}^{-\frac{1}{2}}}{1+{a}^{-\frac{1}{2}}}$-$\frac{2{a}^{\frac{1}{2}}}{a-1}$;
(2)2${\;}^{3+lo{g}_{2}5}$;
(3)lg5•lg20+(lg2)2

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.设双曲线$\frac{x^2}{a^2}-\frac{y^2}{b^2}$=1(a>0,b>0)的右焦点为F,直线:x=$\frac{{a}^{2}}{c}$与两条渐近线交于P,Q两点,如果△PQF是等边三角形,则双曲线的离心率e的值为2.

查看答案和解析>>

同步练习册答案