精英家教网 > 高中数学 > 题目详情

【题目】已知集合A={x|x<﹣2或3<x≤4},B={x|x2﹣2x﹣15≤0}.求:
(1)A∩B;
(2)若C={x|x≥a},且B∩C=B,求a的范围.

【答案】
(1)解:由集合B中的不等式x2﹣2x﹣15≤0,

因式分解得:(x+3)(x﹣5)≤0,

可化为:

解得:﹣3≤x≤5,

∴B={x|﹣3≤x≤5},又A={x|x<﹣2或3<x≤4},

则A∩B={x|﹣3≤x<﹣2或3<x≤4}


(2)解:∵B∩C=B,

∴BC,

则a≤﹣3


【解析】(1)把集合B中的一元二次不等式的左边分解因式,根据两数相乘异号得负的取符号法则转化为两个不等式组,求出两不等式组解集的并集得到原不等式的解集,确定出集合B,找出A和B的公共部分即可得到两集合的交集;(2)由B和C的交集为集合B,得到集合B是集合C的子集,根据集合B及C中不等式解集的特点,列出关于a的不等式,得到a的范围.
【考点精析】关于本题考查的集合的交集运算,需要了解交集的性质:(1)A∩BA,A∩BB,A∩A=A,A∩=,A∩B=B∩A;(2)若A∩B=A,则AB,反之也成立才能得出正确答案.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】某科技公司生产一种手机加密芯片,其质量按测试指标划分为:指标大于或等于为合格品,小于为次品.现随机抽取这种芯片共件进行检测,检测结果统计如表:

测试指标

芯片数量(件)

已知生产一件芯片,若是合格品可盈利元,若是次品则亏损元.

(Ⅰ)试估计生产一件芯片为合格品的概率;并求生产件芯片所获得的利润不少于元的概率.

(Ⅱ)记为生产件芯片所得的总利润,求随机变量的分布列和数学期望

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设函数f(x)=x|x﹣a|,若对于任意x1 , x2∈[3,+∞),x1≠x2 , 不等式 >0恒成立,则实数a的取值范围是

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=
(1)解不等式f(x)<
(2)求函数f(x)值域.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】平面直角坐标系xOy中,曲线C:(x﹣1)2+y2=1.直线l经过点P(m,0),且倾斜角为 .以O为极点,以x轴正半轴为极轴,建立坐标系.
(1)写出曲线C的极坐标方程与直线l的参数方程;
(2)若直线l与曲线C相交于A,B两点,且|PA||PB|=1,求实数m的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=ax2+bx+1(x∈R),(a,b为实数).
(1)若f(1)=0,且函数f(x)的值域为[0,+∞),求f(x)的表达式;
(2)在(1)的条件下,若关于x方程|f(x+1)﹣1|=m|x﹣1|只有一个实数解,求实数m的取值范围;
(3)在(1)的条件下,求函数h(x)=2f(x+1)+x|x﹣m|+2m最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数)(…是自然对数的底数).

(1)求单调区间;

(2)讨论在区间内零点的个数.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】共享单车是指企业在校园、地铁站点、公交站点、居民区、商业区、公共服务区等提供自行车单车共享服务,是共享经济的一种新形态.一个共享单车企业在某个城市就“一天中一辆单车的平均成本(单位:元)与租用单车的数量(单位:千辆)之间的关系”进行调查研究,在调查过程中进行了统计,得出相关数据见下表:

租用单车数量(千辆)

2

3

4

5

8

每天一辆车平均成本(元)

3.2

2.4

2

1.9

1.7

根据以上数据,研究人员分别借助甲、乙两种不同的回归模型,得到两个回归方程,方程甲: ,方程乙: .

(1)为了评价两种模型的拟合效果,完成以下任务:

①完成下表(计算结果精确到0.1)(备注: ,称为相应于点的残差(也叫随机误差));

租用单车数量 (千辆)

2

3

4

5

8

每天一辆车平均成本 (元)

3.2

2.4

2

1.9

1.7

模型甲

估计值

2.4

2.1

1.6

残差

0

-0.1

0.1

模型乙

估计值

2.3

2

1.9

残差

0.1

0

0

②分别计算模型甲与模型乙的残差平方和,并通过比较的大小,判断哪个模型拟合效果更好.

(2)这个公司在该城市投放共享单车后,受到广大市民的热烈欢迎,共享单车常常供不应求,于是该公司研究是否增加投放.根据市场调查,这个城市投放8千辆时,该公司平均一辆单车一天能收入10元,6元收入的概率分别为0.6,0.4;投放1万辆时,该公司平均一辆单车一天能收入10元,6元收入的概率分别为0.4,0.6.问该公司应该投放8千辆还是1万辆能获得更多利润?(按(1)中拟合效果较好的模型计算一天中一辆单车的平均成本,利润=收入-成本).

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在四棱锥中,底面为直角梯形, 均为等边三角形,且平面平面,点中点.

(1)求证: 平面

(2)若的面积为,求四棱锥的体积.

查看答案和解析>>

同步练习册答案