【题目】给定椭圆C:
=1(a>b>0).设t>0,过点T(0,t)斜率为k的 直线l与椭圆C交于M,N两点,O为坐标原点.
(Ⅰ)用a,b,k,t表示△OMN的面积S,并说明k,t应满足的条件;
(Ⅱ)当k变化时,求S的最大值g(t).![]()
【答案】解:(Ⅰ)根据题意,设l方程为y=kx+t, 将l方程代入C方程整理得(b2+a2k2)x2+2a2ktx+a2(t2﹣b2)=0;
△=4a4k2t2﹣4a2(t2﹣b2)(b2+a2k2)=4a2b2(b2+a2k2﹣t2).
由△>0得k,t应满足的条件为 b2+a2k2﹣t2>0,
=
=
.
所以
,其中b2+a2k2>t2
(Ⅱ)
=
.
当
,即
,取
,有
,得
.
当
,即
,b2+a2k2>2t2 , 有
,
取k=0,得
.
所以,当k变化时,S的最大值g(t)= ![]()
【解析】(Ⅰ)根据题意,设l方程为y=kx+t,联立直线与椭圆的方程可得(b2+a2k2)x2+2a2ktx+a2(t2﹣b2)=0;由根与系数的关系的关系表示|OT|和|xM﹣xN|,进而由三角形面积公式计算可得答案;(Ⅱ)由(Ⅰ)可得S的表达式,分
与
两种情况讨论,分析S的最大值,综合即可得答案.
科目:高中数学 来源: 题型:
【题目】近年空气质量逐步雾霾天气现象增多,大气污染危害加重,大气污染可引起心悸,呼吸困难等心肺疾病,为了解某市心肺疾病是否与性别有关,在某医院随机的对入院50人进行了问卷调查得到了如下的列联表:
患心肺疾病 | 不患心肺疾病 | 合计 | |
男 | 5 | ||
女 | 10 | ||
合计 | 50 |
已知在全部50人中随机抽取1人,抽到患心肺疾病的人的概率为
.
(1)请将上面的列联表补充完整,并判断是否有99.5%的把握认为患心肺疾病与性别有关?说明你的理由;
(2)已知在患心肺疾病的10位女性中,有3位又患胃病,现在从患心肺疾病的10位女性中,选出3名进行其他方面的排查,记选出患胃病的女性人数为
,求
的分布列、数学期望及方差,下面的临界值表供参考:
| 0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 |
| 2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
(参考公式
,其中
.)
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在直角坐标系xOy中,以M(﹣1,0)为圆心的圆与直线
相切.
(1)求圆M的方程;
(2)过点(0,3)的直线l被圆M截得的弦长为
,求直线l的方程.
(3)已知A(﹣2,0),B(2,0),圆M内的动点P满足|PA||PB|=|PO|2 , 求
的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数f(x)=cos2x的图象向左平移
个单位后得到函数g(x)的图象,若使|f(x1)﹣g(x2)|=2成立x1 , x2的满足
,则φ的值为( )
A.![]()
B.![]()
C.![]()
D.![]()
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在△ABC中,角A,B,C的对边分别为a,b,c,且bsinA=asin2B.
(Ⅰ)求角B;
(Ⅱ)若b=
,a+c=ac,求△ABC的面积.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】设函数f(x)=lnx+
ax2+x+1.
(I)a=﹣2时,求函数f(x)的极值点;
(Ⅱ)当a=0时,证明xex≥f(x)在(0,+∞)上恒成立.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com