精英家教网 > 高中数学 > 题目详情
11.在△ABC中,a=1,b=$\sqrt{3}$,B=$\frac{π}{3}$,则△ABC的内切圆的半径是$\frac{\sqrt{3}-1}{2}$.

分析 先根据正弦定理求出A,得到三角形为直角三角形,设内切圆的半径为r,再根据三角形的面积可得S△ABC=$\frac{1}{2}$ab=$\frac{1}{2}$(a+b+c)r,化简计算即可

解答 解:在△ABC中,∵a=1,b=$\sqrt{3}$,B=$\frac{π}{3}$,
由正弦定理可得$\frac{a}{sinA}$=$\frac{b}{sinB}$.
∴sinA=$\frac{1×\frac{\sqrt{3}}{2}}{\sqrt{3}}$=$\frac{1}{2}$,
∵a<b,
∴A=$\frac{π}{6}$,
∴C=$\frac{π}{2}$,c=2
设内切圆的半径为r,
∴S△ABC=$\frac{1}{2}$ab=$\frac{1}{2}$(a+b+c)r,
∴r=$\frac{ab}{a+b+c}$=$\frac{\sqrt{3}}{1+\sqrt{3}+2}$=$\frac{\sqrt{3}}{3+\sqrt{3}}$=$\frac{1}{\sqrt{3}+1}$=$\frac{\sqrt{3}-1}{2}$,
故答案为:$\frac{\sqrt{3}-1}{2}$

点评 本题考查了正弦定理和解直角三角形以及三角形的面积公式,属于基础题

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

1.我国是世界上严重缺水的国家,某市政府为了鼓励居民节约用水,计划调整居民生活用水收费方案,拟确定一个合理的月用水量标准x(吨),一位居民的月用水量不超过x的部分按平价收费,超过x的部分按议价收费.为了了解居民用水情况,通过抽样,获得了某年100位居民每人的月均用水量(单位:吨),将数据按照[0,0.5),[0.5,1),…,[4,4.5)分成9组,制成了如图所示的频率分布直方图.
(Ⅰ)求直方图中a的值;
(Ⅱ)若将频率视为概率,从该城市居民中随机抽取3人,记这3人中月均用水量不低于3吨的人数为X,求X的分布列与数学期望.
(Ⅲ)若该市政府希望使85%的居民每月的用水量不超过标准x(吨),估计x的值(精确到0.01),并说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.某研究机构在对线性相关的两个变量x和y进行统计分析时,得到如下数据:
x4681012
y12356
由表中数据求的y关于x的回归方程为$\hat y=0.65x+\hat a$,则在这些样本点中任取一点,该点落在回归直线下方的概率为(  )
A.$\frac{2}{5}$B.$\frac{3}{5}$C.$\frac{3}{4}$D.$\frac{1}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.自2017年2月底,90多所自主招生试点高校将陆续出台2017年自主招生简章,怀化市某学校高三年级为了提高学生自主招生考试的通过率,对A、B、C、D四所国内知名大学2016年自主招生考试的语文和数学的控分做了如下调查:
学校ABCD
语文(x分)118120114112
数学 (y分)116123114119
(Ⅰ)依据上表中的数据用最小二乘法求数学控分$\hat y$关于语文控分x的线性回归方程$\hat y=\hat bx+\hat a$及当某高校自主招生考试语文控分为110分时,预测该校的数学控分.
(Ⅱ)依据调查表,怀化市的这所学校从A、B、C、D四所大学任选两所,求选出的这两所学校的语文和数学控分都低于120分的概率.
(附:线性回归方程$\hat y=\hat bx+\hat a$中,$\left\{\begin{array}{l}\hat b=\frac{{\sum_{i=1}^n{({x_i}-\overline x)({y_i}-\overline y)}}}{{\sum_{i=1}^n{{{({x_i}-\overline x)}^2}}}}\\ \hat a=\overline y-\hat b×\overline x\end{array}\right.$)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.如图所示,某幼儿园有一个游乐场ABCD,其中AB=50米,BC=40米,由于幼儿园招生规模增大,需将该游乐场扩大成矩形区域EFGH,要求A、B、C、D四个点分别在矩形EFGH的四条边(不含顶点)上.设∠BAE=θ(弧度),EF的长为y米.
(1)求y关于θ的函数表达式;
(2)求矩形区域EFGH的面积S的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.已知椭圆C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)的左、右焦点分别为F1,F2,O为坐标原点,点P(1,$\frac{\sqrt{2}}{2}$)在椭圆上,连接PF1交y轴于点Q,点Q满足$\overrightarrow{PQ}$=$\overrightarrow{Q{F}_{1}}$.直线l不过原点O且不平行于坐标轴,l与椭圆C有两个交点A,B.
(Ⅰ)求椭圆C的标准方程;
(Ⅱ)已知点M($\frac{5}{4}$,0),若直线l过椭圆C的右焦点F2,证明:$\overrightarrow{MA}$•$\overrightarrow{MB}$为定值;
(Ⅲ)若直线l过点(0,2),设N为椭圆C上一点,且满足$\overrightarrow{OA}$+$\overrightarrow{OB}$=λ$\overrightarrow{ON}$,求实数λ的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.某班5名学生的数学和物理成绩如表:
学生
学科
ABCDE
数学成绩(x)8876736663
物理成绩(y)7865716461
(1)画出散点图;
(2)求物理成绩y对数学成绩x的线性回归方程:
(3)一名学生的数学成绩为96分,试预测他的物理成绩.
参考数据:$\sum_{i=1}^5{{x_i}{y_i}}=25054,\sum_{i=1}^5{{x_i}^2}=27174$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.关于x的方程cos2x+sinx+a=0在$x∈({0,\frac{π}{2}}]$上有解,则a的取值范围是$[{-\frac{5}{4},-1}]$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.下列求导错误的是(  )
A.$(\frac{1}{x})'=-\frac{1}{x^2}$B.$(\sqrt{x})'=\frac{1}{{2\sqrt{x}}}$C.$(lnx)'=\frac{1}{x}$D.$(sin\frac{π}{3})'=cos\frac{π}{3}$

查看答案和解析>>

同步练习册答案