精英家教网 > 高中数学 > 题目详情
一个空间几何体的三视图如图所示,其中正视图为等腰直角三角形,侧视图与俯视图为正方形,则该几何体的表面积为
 
考点:由三视图求面积、体积
专题:空间位置关系与距离
分析:由已知中的三视图可得,该几何体为以主视图为底面的三棱柱,分别求出底面面积、周长和高,代入棱锥表面积公式,可得答案.
解答: 解:由已知中的三视图可得,该几何体为以主视图为底面的三棱柱,
底面面积S=
1
2
×4×4=8,
底面周长C=4+4+4
2
=8+4
2

棱锥的高h=4,
故棱柱的表面积为:2S+Ch=16+32+16
2
=48+16
2

故答案为:48+16
2
点评:本题考查的知识点是由三视图求体积和表面积,解决本题的关键是得到该几何体的形状.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

设x,y满足约束条件
6x-2y-3≤0
x-y+
1
2
≥0
x≥0,y≥0
,若目标函数z=ax+by(a>0,b>0)的最大值为6,则
1
2a
+
3
b
的最小值为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=alnx+
1
2
x2
+x.
(1)求f(x)的单调区间;
(2)函数g(x)=
2
3
x3+x-
1
6
(x>0)
,求证:a=1时f(x)的图象都不在g(x)图象的上方.

查看答案和解析>>

科目:高中数学 来源: 题型:

对两个变量y和x进行回归分析,得到一组样本数据:(x1,y1),(x2,y2)…,(xn,yn),计算线性相关系数γ;并由样本数据得到回归方程y=bx+a再计算残差平方和与相关指数R2
①线性回归方程y=bx+a必过样本中心((
.
x
.
y
)

②线性相关系数γ的绝对值越接近于1,表明两个随机变量线性相关性越强;
③用相关指数R2来刻画回归效果,R2越小,说明模型的拟合效果越好;
④在回归分析中,残差平方和代表了数据点和它在回归直线上相应位置的差异.
则以上说法正确的是
 
.(写出所有正确说法的序号)

查看答案和解析>>

科目:高中数学 来源: 题型:

设函数f(x)=
2
sin(ωx-
π
4
)
,x∈R.
(1)若ω=
1
2
,求f(x)的最大值及相应的x的集合;
(2)若x=
π
8
是f(x)的一个零点,且0<ω<10,求ω的值和f(x)的最小正周期.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知某个几何体的三视图如图(正视图的弧线是半圆),根据图中标出的尺寸(单位:cm),可得这个几何体的体积是(  )
A、(80+4π)cm3
B、(80+5π)cm3
C、(80+6π)cm3
D、(80+10π)cm3

查看答案和解析>>

科目:高中数学 来源: 题型:

用导数方法求和:1+2x+3x2+…+nxn-1(x≠0,1,n∈N*).

查看答案和解析>>

科目:高中数学 来源: 题型:

某品牌饮料为了扩大其消费市场,特实行“再来一瓶”有奖促销活动.该品牌饮料的瓶盖内或刻有“再来一瓶”字样,或刻有“谢谢惠顾”字样,如见瓶盖内刻有“再来一瓶”字样,即可凭该瓶盖,在指定零售地点兑换相同规格的饮料一瓶,本次活动中奖的概率为
1
5
今年春节期间有甲、乙、丙3位朋友聚会,选用6瓶这种饮料,并限定每人喝2瓶,求:
(1)甲喝的2瓶饮料都中奖的概率;
(2)乙喝到中奖饮料的概率;
(3)甲、乙、丙3人中恰有2人喝到中奖饮料的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知3x2+2y2=6x,求x2+y2的范围.

查看答案和解析>>

同步练习册答案