精英家教网 > 高中数学 > 题目详情
16.已知各项均为正数的数列{an}首项为2,且满足$a_n^2-{a_n}{a_{n-1}}-n(n+1)a_{n+1}^2=0$,公差不为零的等差数列{bn}的前n项和为Sn,S5=15,且b1,b3,b9成等比数列,设${c_n}=\frac{b_n}{a_n}$
(1)求数列{an}的通项公式
(2)求数列{cn}的前n项和Tn

分析 (1)推导出an=(n+1)an-1,从而an-1=nan-2,an-2=(n-1)an-3,…,a2=3a1,上面n-1个式子相乘,能求出an=(n+1)!.
(2)设{bn}的公差d,5b1+10d=15,(b1+2d)2=b1(b1+8d),解得b1=1,d=1,bn=n,从而cn=$\frac{{b}_{n}}{{a}_{n}}$=$\frac{n}{(n+1)!}$=$\frac{n•n!}{(n+1)!n!}$=$\frac{1}{n!}-\frac{1}{(n+1)!}$,由此能求出数列{cn}的前n项和.

解答 解:(1)∵各项均为正数的数列{an}首项为2,且满足$a_n^2-{a_n}{a_{n-1}}-n(n+1)a_{n+1}^2=0$,
∴${{a}_{n}}^{2}={a}_{n}{a}_{n+1}-n(n+1){{a}_{n+1}}^{2}$
=(an+nan-1)(an-(n+1)an+1)=0,
∵an+nan-1>0,∴an=(n+1)an-1
∴an-1=nan-2,an-2=(n-1)an-3,…,a2=3a1
上面n-1个式子相乘,得:
an=(n+1)!.
(2)设{bn}的公差d,5b1+10d=15,(b1+2d)2=b1(b1+8d),
解得b1=1,d=1,bn=n,
cn=$\frac{{b}_{n}}{{a}_{n}}$=$\frac{n}{(n+1)!}$=$\frac{n•n!}{(n+1)!n!}$=$\frac{1}{n!}-\frac{1}{(n+1)!}$,
∴数列{cn}的前n项和:
Tn=$\frac{1}{1}-\frac{1}{2!}+\frac{1}{2!}-\frac{1}{3!}$+…+$\frac{1}{n!}-\frac{1}{(n+1)!}$=1-$\frac{1}{(n+1)!}$.

点评 本题考查数列的通项公式的求法,考查数列的前n项和的求法,考查累乘法、裂项求和法等基础知识,考查推理论证能力、运算求解能力,考查化归与转化思想、函数与方程思想,是中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

6.设抛物线fn(x)=x2-2n+1x+4n+2n的顶点为Pn(an,bn),cn=an+bn,求数列{cn}的前n项和.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.已知函数f(x)是(-∞,+∞)上的偶函数,若对于x≥0,都有f(x+2)=-f(x),且当x∈[0,2)时,f(x)=log2(x+1),则f(-2 015)+f(2 016)=1.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.已知抛物线M:y2=4x,圆N:(x-1)2+y2=r2(其中r为常数,且r>0),过点(1,0)的直线l交圆N于C、D两点,交抛物线M于A、B两点,若使|AC|=|BD|成立的直线有3条,则r的取值范围是(  )
A.(0,1)B.(1,2)C.(2,+∞)D.($\frac{3}{2}$,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.已知椭圆C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)的焦距为4,且点(-2,$\sqrt{2}$)在椭圆C上.
(1)求椭圆C的方程;
(2)若点B为椭圆的下顶点,直线l与椭圆C交于不同的两点P,Q(异于点B),直线BQ与BP的斜率之和为2,求证:直线l经过定点.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.已知函数$f(x)=\frac{sinπx}{{({x^2}+1)({x^2}-2x+2)}}$,x∈R.
(Ⅰ)请判断方程f(x)=0在区间[-2017,2017]上的根的个数,并说明理由;
(Ⅱ)判断f(x)的图象是否具有对称轴,如果有请写出一个对称轴方程,若不具有对称性,请说明理由;
(Ⅲ)求证:$\sum_{i=2}^n{\frac{{f(\frac{2i-1}{2})}}{{sin\frac{2i-1}{2}π}}}<\frac{2}{5}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.已知直线l:x-y=1与圆M:x2+y2-2x+2y=0相交于A,C两点,点B,D分别在圆M上运动,且位于直线AC两侧,则四边形ABCD面积的最大值为2$\sqrt{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.若${(3{x^2}-\frac{1}{{2{x^3}}})^n}$的展开式中含有常数项,则当正整数n取得最小值时,常数项的值为$\frac{135}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.已知数列{an}的各项均为正数,其前n项和为Sn,且满足4Sn=(an+1)2,n∈N*
(Ⅰ)求数列{an}的通项公式;
(Ⅱ)设bn=$\frac{{a}_{n}}{{2}^{n-1}}$,Tn为数列{bn}的前n项和,求证Tn<6:.

查看答案和解析>>

同步练习册答案