精英家教网 > 高中数学 > 题目详情
(2012•江苏二模)已知等差数列{an},{bn}的前n项和分别为Sn和Tn,若
Sn
Tn
=
7n+45
n+3
,且
an
b2n
是整数,则n的值为
15
15
分析:
Sn
Tn
=
7n+45
n+3
中,令n=1可得 a1=13b1 ,设等差数列{an}和{bn}的公差分别为d1 和d2,再分别令n=2,3,解得 b1=2d2,d1=7d2 ,a1=26d2.化简
an
b2n
7n+19
2n+1
是整数,由此可得n的值.
解答:解:由题意可得
a1
b1
=
S1
T1
=
52
4
=13,故 a1=13b1
设等差数列{an}和{bn}的公差分别为d1 和d2
S2
T2
=
a1+a1+1
b1+b1 +2
=
14+45
2+3
=
59
5
,把 a1=13b1 代入化简可得 12b1=59d2-5d1 ①.
再由
S3
T3
=
3a1+31
3b1+3d 2
=
21+45
3+3
=11,把 a1=13b1 代入化简可得 2b1=11d2-d1 ②.
解①②求得 b1=2d2,d1=7d2.故有 a1=26d2
 由于
an
b2n
=
a1 +(n-1)1
b1+ (2n-1)2
=
26d2 +(n-1)•7d 2
2d2+ (2n-1)2
=
7n+19
2n+1
 为整数,
∴n=15,
故答案为 15.
点评:此题考查了等差数列的性质,以及等差数列的前n项和公式,熟练掌握性质及公式是解本题的关键,属于中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(2012•江苏二模)设m,n是两条不同的直线,α,β是两个不同的平面,给出下列命题:
(1)若α∥β,m?β,n?α,则m∥n;
(2)若α∥β,m⊥β,n∥α,则m⊥n;
(3)若α⊥β,m⊥α,n∥β,则m∥n;
(4)若α⊥β,m⊥α,n⊥β,则m⊥n.
上面命题中,所有真命题的序号为
(2),(4)
(2),(4)

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•江苏二模)如图,已知A、B是函数y=3sin(2x+θ)的图象与x轴两相邻交点,C是图象上A,B之间的最低点,则
AB
AC
=
π2
8
π2
8

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•江苏二模)如图,在C城周边已有两条公路l1,l2在点O处交汇,现规划在公路l1,l2上分别选择A,B两处为交汇点(异于点O)直接修建一条公路通过C城,已知OC=(
2
+
6
)km
,∠AOB=75°,∠AOC=45°,设OA=xkm,OB=ykm.
(1)求y关于x的函数关系式并指出它的定义域;
(2)试确定点A、B的位置,使△OAB的面积最小.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•江苏二模)设实数n≤6,若不等式2xm+(2-x)n-8≥0对任意x∈[-4,2]都成立,则
m4-n4
m3n
的最小值为
-
80
3
-
80
3

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•江苏二模)已知双曲线
x2
m
-
y2
3
=1(m>0)
的一条渐近线方程为y=
3
2
x
,则m的值为
4
4

查看答案和解析>>

同步练习册答案