如图:四棱锥
中,
,
,
.
∥
,
.![]()
.![]()
(Ⅰ)证明:
平面
;
(Ⅱ)在线段
上是否存在一点
,使直线
与平面
成角正弦值等于
,若存在,指出
点位置,若不存在,请说明理由.
(Ⅰ)证明:取线段
中点
,连结
.
根据边角关系及
得到
,
因为
,且
,可得
平面
。
(Ⅱ)点
是线段
的中点.
解析试题分析:(Ⅰ)证明:取线段
中点
,连结
.![]()
因为
,
所以
1分
因为
∥
,
所以
, 2分
又因为
,所以![]()
![]()
,而![]()
所以
. 4分
因为
,所以
即![]()
因为
,且![]()
所以
平面
6分
(Ⅱ)解:以
为坐标原点,以![]()
所在直线分别为
轴建立空间直角坐标系如图所示:
则
四点坐标分别为:
;
;
;
8分
设
;平面
的法向量![]()
.
因为点
在线段
上,所以假设
,所以
![]()
即
,所以
. 9分
又因为平面
的法向量
.
所以
,所以![]()
所以
10分
因为直线
与平面
成角正弦值等于
,所以
.
所以
即
.所以点
是线段
的中点. 12分
考点:本题主要考查立体几何中的平行关系、垂直关系,空间向量的应用。
点评:中档题,立体几何题,是高考必考内容,往往涉及垂直关系、平行关系、角、距离、体积的计算。在计算问题中,有“几何法”和“向量法”。利用几何法,要遵循“一作、二证、三计算”的步骤。(1)注意转化成了平面几何问题;(2)利用空间向量,省去繁琐的证明,也是解决立体几何问题的一个基本思路。对计算能力要求较高。
科目:高中数学 来源: 题型:解答题
如图,四棱锥P-ABCD的底面为正方形,侧面PAD是正三角形,且侧面PAD⊥底面ABCD,![]()
(I) 求证:平面PAD⊥平面PCD
(II)求二面角A-PC-D的余弦值.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
如图所示的几何体中,四边形
为矩形,
为直角梯形,且
=
= 90°,平面
平面
,
,![]()
![]()
(1)若
为
的中点,求证:
平面
;
(2)求平面
与平面
所成锐二面角的大小.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
如图,在四棱锥P-ABCD中,四边形ABCD是正方形,PD⊥平面ABCD,PD=AB=2, E,F,G分别是PC,PD,BC的中点.![]()
(1)求三棱锥E-CGF的体积;
(2)求证:平面PAB//平面EFG;
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
如图,矩形ABCD中,AB=3,BC=4.E,F分别在线段BC和AD上,EF//AB,将矩形ABEF沿EF折起.记折起后的矩形为MNEF,且平面MNEF⊥平面ECDF.![]()
(1)求证:NC∥平面MFD;
(2)若EC=3,求证:ND⊥FC;
(3)求四面体NFEC体积的最大值.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
直棱柱ABCD—A1B1C1D1中,底面ABCD是直角梯形,∠BAD=∠ADC=90°,AB=2AD=2CD=2.
(1)求证:平面ACB1⊥平面BB1C1C;
(2)在A1B1上是否存在一点P,使得DP与平面ACB1平行?证明你的结论.![]()
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
在直角梯形PBCD中,
,A为PD的中点,如下左图。将
沿AB折到
的位置,使
,点E在SD上,且
,如下图。
(1)求证:
平面ABCD;
(2)求二面角E—AC—D的正切值.![]()
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com