ÒÑÖªÍÖÔ²C£º
x2
a2
+
y2
b2
=1
£¨a£¾b£¾0£©µÄ×óÓÒ½¹µã·Ö±ðÊÇF1£¨-c£¬0£©£¬F2£¨c£¬0£©£¬Ö±Ïßl£ºx=my+cÓëÍÖÔ²C½»ÓÚÁ½µãM£¬NÇÒµ±m=-
3
3
ʱ£¬MÊÇÍÖÔ²CµÄÉ϶¥µã£¬ÇÒ¡÷MF1F2µÄÖܳ¤Îª6£®
£¨1£©ÇóÍÖÔ²CµÄ·½³Ì£»
£¨2£©ÉèÍÖÔ²CµÄ×ó¶¥µãΪA£¬Ö±ÏßAM£¬ANÓëÖ±Ïߣºx=4·Ö±ðÏཻÓÚµãP£¬Q£¬Îʵ±m±ä»¯Ê±£¬ÒÔÏß¶ÎPQΪֱ¾¶µÄÔ²±»xÖá½ØµÃµÄÏÒ³¤ÊÇ·ñΪ¶¨Öµ£¿ÈôÊÇ£¬Çó³öÕâ¸ö¶¨Öµ£¬Èô²»ÊÇ£¬ËµÃ÷ÀíÓÉ£®
·ÖÎö£º£¨1£©¸ù¾Ým=-
3
3
ʱ£¬Ö±ÏßµÄÇãб½ÇΪ120¡ã£¬ÓÖ¡÷MF1F2µÄÖܳ¤Îª6£¬¼´¿ÉÇóµÃÍÖÔ²·½³Ì£»
£¨2£©ÀûÓÃÌØÊâλÖòÂÏë½áÂÛ£ºµ±m=0ʱ£¬Ö±ÏßlµÄ·½³ÌΪ£ºx=1£¬ÇóµÃÒÔPQΪֱ¾¶µÄÔ²¹ýÓÒ½¹µã£¬±»xÖá½ØµÃµÄÏÒ³¤Îª6£¬²Â²âµ±m±ä»¯Ê±£¬ÒÔPQΪֱ¾¶µÄÔ²ºã¹ý½¹µãF2£¬±»xÖá½ØµÃµÄÏÒ³¤Îª¶¨Öµ6£¬ÔÙ½øÐÐÖ¤Ã÷¼´¿É£®
½â´ð£º½â£º£¨1£©µ±m=-
3
3
ʱ£¬Ö±ÏßµÄÇãб½ÇΪ120¡ã£¬ÓÖ¡÷MF1F2µÄÖܳ¤Îª6
ËùÒÔ£º
2a+2c=6
c
a
=cos60¡ã
¡­£¨3·Ö£©
½âµÃ£ºa=2£¬c=1⇒b=
3
£¬¡­£¨5·Ö£©
ËùÒÔÍÖÔ²·½³ÌÊÇ£º
x2
4
+
y2
3
=1
£»¡­£¨6·Ö£©
£¨2£©µ±m=0ʱ£¬Ö±ÏßlµÄ·½³ÌΪ£ºx=1£¬´Ëʱ£¬M£¬NµãµÄ×ø±ê·Ö±ðÊÇ(1£¬
3
2
)£¬(1£¬-
3
2
)
£¬ÓÖAµã×ø±êÊÇ£¨-2£¬0£©£¬
ÓÉͼ¿ÉÒԵõ½P£¬QÁ½µã×ø±ê·Ö±ðÊÇ£¨4£¬3£©£¬£¨4£¬-3£©£¬ÒÔPQΪֱ¾¶µÄÔ²¹ýÓÒ½¹µã£¬±»xÖá½ØµÃµÄÏÒ³¤Îª6£¬²Â²âµ±m±ä»¯Ê±£¬ÒÔPQΪֱ¾¶µÄÔ²ºã¹ý½¹µãF2£¬±»xÖá½ØµÃµÄÏÒ³¤Îª¶¨Öµ6£¬¡­£¨8·Ö£©
Ö¤Ã÷ÈçÏ£º
ÉèµãM£¬NµãµÄ×ø±ê·Ö±ðÊÇ£¨x1£¬y1£©£¬£¨x2£¬y2£©£¬ÔòÖ±ÏßAMµÄ·½³ÌÊÇ£º
y
y1
=
x+2
x1+2
£¬
ËùÒÔµãPµÄ×ø±êÊÇ(4£¬
6y1
x1+2
)
£¬Í¬Àí£¬µãQµÄ×ø±êÊÇ(4£¬
6y2
x2+2
)
£¬¡­£¨9·Ö£©
ÓÉ·½³Ì×é
x2
4
+
y2
3
=1
x=my+1
µÃµ½£º3£¨my+1£©2+4y2=12⇒£¨3m2+4£©y2+6my-9=0£¬
ËùÒÔ£ºy1+y2=
-6m
3m2+4
£¬y1y2=
-9
3m2+4
£¬¡­£¨11·Ö£©
´Ó¶ø£º
F2P
F2Q
=(4-1)(4-1)+
36y1y2
(x1+2)(x2+2)
=9+
36y1y2
(my1+3)(my2+3)

=9+
36y1y2
m2y1y2+3m(y1+y2)+9
=9+
-9¡Á36
-9m2-18m2+27m2+36
=0£¬
ËùÒÔ£ºÒÔPQΪֱ¾¶µÄÔ²Ò»¶¨¹ýÓÒ½¹µãF2£¬±»xÖá½ØµÃµÄÏÒ³¤Îª¶¨Öµ6£®¡­£¨13·Ö£©
µãÆÀ£º±¾Ì⿼²éÍÖÔ²µÄ±ê×¼·½³Ì£¬¿¼²éÖ±ÏßÓëÍÖÔ²µÄλÖùØÏµ£¬½âÌâµÄ¹Ø¼üÊÇÀûÓÃÌØÊâλÖ㬲ÂÏë½áÂÛ£¬ÔÙ½øÐÐÖ¤Ã÷£®
Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

ÒÑÖªÍÖÔ²C£º
x2
a2
+
y2
b2
=1(a£¾b£¾0)
µÄÀëÐÄÂÊΪ
1
2
£¬ÇÒ¾­¹ýµãP(1£¬
3
2
)
£®
£¨1£©ÇóÍÖÔ²CµÄ·½³Ì£»
£¨2£©ÉèFÊÇÍÖÔ²CµÄ×ó½¹£¬ÅжÏÒÔPFΪֱ¾¶µÄÔ²ÓëÒÔÍÖÔ²³¤ÖáΪֱ¾¶µÄÔ²µÄλÖùØÏµ£¬²¢ËµÃ÷ÀíÓÉ£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

ÒÑÖªÍÖÔ²C£º
x2
a2
+
y2
b2
=1£¨a£¾b£¾0£©µÄ¶ÌÖ᳤Ϊ2
3
£¬ÓÒ½¹µãFÓëÅ×ÎïÏßy2=4xµÄ½¹µãÖØºÏ£¬OÎª×ø±êÔ­µã£®
£¨1£©ÇóÍÖÔ²CµÄ·½³Ì£»
£¨2£©ÉèA¡¢BÊÇÍÖÔ²CÉϵIJ»Í¬Á½µã£¬µãD£¨-4£¬0£©£¬ÇÒÂú×ã
DA
=¦Ë
DB
£¬Èô¦Ë¡Ê[
3
8
£¬
1
2
]£¬ÇóÖ±ÏßABµÄбÂʵÄȡֵ·¶Î§£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

ÒÑÖªÍÖÔ²C£º
x2
a2
+
y2
b2
=1£¨a£¾b£¾0£©¾­¹ýµãA£¨1£¬
3
2
£©£¬ÇÒÀëÐÄÂÊe=
3
2
£®
£¨¢ñ£©ÇóÍÖÔ²CµÄ·½³Ì£»
£¨¢ò£©¹ýµãB£¨-1£¬0£©ÄÜ·ñ×÷³öÖ±Ïßl£¬Ê¹lÓëÍÖÔ²C½»ÓÚM¡¢NÁ½µã£¬ÇÒÒÔMNΪֱ¾¶µÄÔ²¾­¹ý×ø±êÔ­µãO£®Èô´æÔÚ£¬Çó³öÖ±ÏßlµÄ·½³Ì£»Èô²»´æÔÚ£¬ËµÃ÷ÀíÓÉ£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

£¨2012•·¿É½Çø¶þÄ££©ÒÑÖªÍÖÔ²C£º
x2
a2
+
y2
b2
=1
£¨a£¾b£¾0£©µÄ³¤Ö᳤ÊÇ4£¬ÀëÐÄÂÊΪ
1
2
£®
£¨¢ñ£©ÇóÍÖÔ²·½³Ì£»
£¨¢ò£©Éè¹ýµãP£¨0£¬-2£©µÄÖ±Ïßl½»ÍÖÔ²ÓÚM£¬NÁ½µã£¬ÇÒM£¬N²»ÓëÍÖÔ²µÄ¶¥µãÖØºÏ£¬ÈôÒÔMNΪֱ¾¶µÄÔ²¹ýÍÖÔ²CµÄÓÒ¶¥µãA£¬ÇóÖ±ÏßlµÄ·½³Ì£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

ÒÑÖªÍÖÔ²C£º
x2
a2
+
y2
b2
=1(a£¾b£¾0)
µÄ¶ÌÖ᳤Ϊ2£¬ÀëÐÄÂÊΪ
2
2
£¬Éè¹ýÓÒ½¹µãµÄÖ±ÏßlÓëÍÖÔ²C½»ÓÚ²»Í¬µÄÁ½µãA£¬B£¬¹ýA£¬B×÷Ö±Ïßx=2µÄ´¹ÏßAP£¬BQ£¬´¹×ã·Ö±ðΪP£¬Q£®¼Ç¦Ë=
AP+BQ
PQ
£¬ÈôÖ±ÏßlµÄбÂÊk¡Ý
3
£¬Ôò¦ËµÄȡֵ·¶Î§Îª
 
£®

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸