精英家教网 > 高中数学 > 题目详情

设p:实数x满足<0,其中a<0;q:实数x满足x2-x-6≤0或x2+2x-8>0,且p是q的必要不充分条件,求a的取值范围.

a≤-4或-≤a<0

解析试题分析:解:设A={x|x2-4ax+3a2<0,a<0}={x|3a<x<a,a<0},
B={x|x2-x-6≤0或x2+2x-8>0}={x|-2≤x≤3}∪{x|x<-4或x>2}={x|x<-4或x≥-2}.
4分
p是q的必要不充分条件,转化成它的逆否命题q是p的必要不充分条件,即p 是q的充分不必要条件,也就是pq且qp.       
由AB,得解得a≤-4或-≤a<0.      
考点:充分条件与必要条件
点评:充分条件与必要条件是一个重要的考点。当时,A是B的充分不必要条件;当时,A是B的必要不充分条件;当时,A是B的充要条件;当时,A是B的既不充分也不必要条件。

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

在平面直角坐标系xoy上,给定抛物线L:y=
1
4
x2.实数p,q满足p2-4q≥0,x1,x2是方程x2-px+q=0的两根,记φ(p,q)=max{|x1|,|x2|}.
(1)过点,A(p0
1
4
p02)(p0≠0),作L的切线交y轴于点B.证明:对线段AB上的任一点Q(p,q),有φ(p,q)=
|p0|
2

(2)设M(a,b)是定点,其中a,b满足a2-4b>0,a≠0.过M(a,b)作L的两条切线l1,l2,切点分别为E(p1
1
4
p
2
1
),E′(p2
1
4
p22),l1,l2与y轴分别交于F,F′.线段EF上异于两端点的点集记为X.证明:M(a,b)∈X?|P1|<|P2|?φ(a,b)=
|p1|
2

(3)设D={ (x,y)|y≤x-1,y≥
1
4
(x+1)2-
5
4
}.当点(p,q)取遍D时,求φ(p,q)的最小值 (记为φmin)和最大值(记为φmax

查看答案和解析>>

科目:高中数学 来源: 题型:

(本题满分14分
A.选修4-4:极坐标与参数方程在极坐标系中,直线l 的极坐标方程为θ=
π
3
(ρ∈R ),以极点为坐标原点,极轴为x轴的正半轴建立平面直角坐标系,曲线C的参数方程为
x=2cosα
y=1+cos2α
(α 参数).求直线l 和曲线C的交点P的直角坐标.
B.选修4-5:不等式选讲
设实数x,y,z 满足x+y+2z=6,求x2+y2+z2 的最小值,并求此时x,y,z 的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

(考生注意:请在下列三题中任选一题作答,如果多做,则按所做的第一题评阅记分)
A.(极坐标与参数方程选讲选做题)设曲线C的参数方程为
x=2+3cosθ
y=-1+3sinθ
(θ为参数),直线l的方程为x-3y+2=0,则曲线C上的动点P(x,y)到直线l距离的最大值为
3+
7
10
10
3+
7
10
10

B.(不等式选讲选做题)若存在实数x满足不等式|x-3|+|x-5|<m2-m,则实数m的取值范围为
(-∞,-1)∪(2,+∞)
(-∞,-1)∪(2,+∞)

C.(几何证明选讲选做题)如图,PC切⊙O于点C,割线PAB经过圆心O,弦CD⊥AB于点E.已知⊙O的半径为3,PA=2,则PC=
4
4
.OE=
5
9
5
9

查看答案和解析>>

科目:高中数学 来源: 题型:

选修4-4:坐标系与参数方程
已知极点与坐标原点重合,极轴与x轴非负半轴重合,M是曲线C:ρ=4sinθ上任意一点,点P满足
OP
=3
OM
,设点P的轨迹为曲线Q.
(Ⅰ)求曲线Q的方程;
(Ⅱ)设曲线Q与直线l:
x=-t
y=t+a
(t为参数)相交于A,B两点且|AB|=4,求实数a的值.

查看答案和解析>>

科目:高中数学 来源:2012年陕西省西安市西工大附中高考数学七模试卷(理科)(解析版) 题型:填空题

(考生注意:请在下列三题中任选一题作答,如果多做,则按所做的第一题评阅记分)
A.(极坐标与参数方程选讲选做题)设曲线C的参数方程为(θ为参数),直线l的方程为x-3y+2=0,则曲线C上的动点P(x,y)到直线l距离的最大值为   
B.(不等式选讲选做题)若存在实数x满足不等式|x-3|+|x-5|<m2-m,则实数m的取值范围为   
C.(几何证明选讲选做题)如图,PC切⊙O于点C,割线PAB经过圆心O,弦CD⊥AB于点E.已知⊙O的半径为3,PA=2,则PC=    .OE=   

查看答案和解析>>

同步练习册答案